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Supplementary data S1 

 

Ground-based map data 

Three data sources were used to calculate ground-based map models: (1) a bioclimatic atlas of 

Salamanca (León Llamazares, 1991); (2) the WorldClim series (Hijmans et al., 2005; 

http://www.worldclim.org/); and (3) a Digital Elevation Model (DEM) built with the contour lines 

of 1:50000 topographic maps by the Junta de Castilla y León (Spain). These three data sources were 

combined in two datasets: GrB-L, with variables from (León Llamazares, 1991) and the DEM; and 

GrB-W, with variables from Worldclim series and the DEM. 

Altitude was obtained from a Digital Elevation Model (DEM) built with the contour lines of 

1:50000 topographic maps by the Junta de Castilla y León (Spain). Slope and orientation (in 

radians) were derived with the Spatial Analyst extension of ArcInfo 9.2. These variables were 

aggregated from their original pixel size (50 m) to 1 km2 using the Aggregate function of ArcInfo 

9.2. The new aggregated pixel was calculated by mean of the original pixels. Only variables with a 

correlation lower than ±0.8 were included in the ground-based map models. Therefore, only Slope 

was included in models performed with Leon Llamazares's variables (that is, GrB-L dataset; 

Supplementary Table 1; León Llamazares, 1991); Altitude, Slope and Exposition were included in 

models performed with Worldclim variables (that is, GrB-W dataset; Supplementary Table 1; 

Hijmans et al., 2005). 

A total of 11 climatic variables were collected from (León Llamazares, 1991; Supplementary Table 

1). These were scanned into images, georeferenced using six points of known coordinates (two 

middle points and the four map corners), in the ArcInfo 9.2 software, and automatically vectorised 

with the ArcScan extension, as well as transformed in a raster file with a pixel size of 1 km2 (see 

variable example in Supplementary Figure 1). The original value of the vector line was maintained 

in the pixels that intersected the vector line. The mean value of two vector lines were assigned to 
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the pixels located between that two vector lines (Supplementary Figure 1). Finally, the GrB-L 

dataset included 12 variables. 

A total of 4 climatic variables were collected from Worldclim series (Supplementary Table 1). 

Worldclim variables (monthly precipitation and mean, minimum, and maximum temperature) are 

interpolated climate surfaces for global land areas (excluding Antarctica) at a spatial resolution of 

30 arc s (1 km2), gathered from a variety of sources and the 1950–2000 period. The monthly 

variables were aggregated in mean and minimum precipitation; maximum of maximum 

temperature; and coldest month temperature. Finally, the GrB-W included 7 variables. 

 

Satellite imagery data 

Altitude was obtained from the SRTM. Slope and orientation (in radians) were obtained with the 

same methodology used for the other DEM (Supplementary Table 2 and Supplementary Figure 2). 

A cloud-free and snow-free Landsat-5 TM scene (path 203, row 32) acquired on Jun 23, 1999 was 

selected, extracting a subset of 2552 rows and 3981 lines (upper left corner: 146502, 4564957; 

lower right corner: 243762, 4439317, UTM coordinates). The scene was corrected with the Fast 

Atmospheric Correction Algorithm (ATCOR) (Richter, 1991); georeferenced to the UTM 

coordinate system (Datum Europeum 1950 for Spain and Portugal) with the Thin Plate Spline 

algorithm using 102 control points from 1:50 000 topographic maps, located in recognizable human 

structures; and resampled to a 30 m spatial resolution with the nearest neighbour method, in order to 

maintain the original pixel values (Chuvieco, 2000). The root-mean square (RMS) error in the 

geometric registration was lower to one pixel. These transformations were made using the 

GCPWorks package of PCI software. 

From the Landsat 5 TM image four variables were obtained (Supplementary Table 2, 

Supplementary Figure 2): Radiance, Land Surface Temperature (LST), Normalized Difference 

Vegetation Index (NDVI), and a Land cover map. 
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1) Radiance, was calculated, as a indirect measure of insolation, with the expression (Chuvieco, 

2000): 

Lsensor,k=a0,k+a1,k NDk, 

where Lsensor,k is the radiance of a particular sensor in a k channel; a0 and a1 are specific coefficients 

for each spectral sensor channel (Supplementary Table 3); and NDk the digital number of the pixel 

k. The total radiance (LT) was the sum of all k radiances, except the thermal channel 6, excluded 

because it has a lower spatial resolution (120 m). 

2) Land Surface Temperature was derived from the radiance of the thermal channel using the Fast 

Atmospheric Correction Algorithm (ATCOR; Richter, 1991). 

3) Normalized Difference Vegetation Index (NDVI) was calculated from the radiance values of 

channels 3 and 4 (Tucker, 1979): 

NDVI=(IRC-R)/(IRC+R), 

where IRC is the near infra-red channel 4 and R is the red channel 3. 

4) To make the Land cover map, the study area was visited several times to map the vegetation, 

drawing the vegetation polygons on two prints of a RGB composition with the 4-3-5 channels of the 

Landsat 5 TM sensor. An average of three training fields for a minimum of 500 pixel extension 

were selected for each land cover type: water, pine, holm-oak, ‘dehesa’ (an open forest exploitation 

with agriculture and cattle use), grown vegetation, shrub, meadow, grown agriculture fields, 

ploughed agriculture fields, abandoned agriculture fields, and ground. Principal Component 

Analysis (PCA) was performed in order to reduce the number of variables into few uncorrelated 

vectors (Sokal and Rohlf, 1995), selecting the first two principal components that explained the 

98.9% of variance. A Maximum Likelihood supervised classification was produced with the two 

PCA components and the NDVI (Chuvieco, 2000). The accuracy assessment gave a value of 70% . 

Each vegetation type was exported to a new channel, where pixels of a given vegetation type were 

reclassified as 1 and remaining pixels as 0. Three variables related with agriculture fields were 
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combined in a unique one, called agriculture fields (Supplementary Table 2). 

The 14 satellite imagery variables were aggregated from their original pixel size (30 m) to 1 km2 

using the Aggregate function of ArcInfo 9.2. The new aggregated pixel was calculated by mean of 

the original pixels. Therefore, each land cover class changed from categorical variable (i.e. the 

presence/absence of a particular land cover class) to continuous variable (i.e. density of this class in 

a particular pixel). 

 

Modelling techniques 

Bioclim (Nix, 1986) uses mean and standard deviation for each environmental variable separately 

(assuming normal distribution) to calculate bioclimatic envelope associated to the occurrence 

points. Each variable has its own envelope represented by the interval [m - c*s, m + c*s], where 'm' 

is the mean; 'c' is the cut-off input parameter; and 's' is the standard deviation. Besides the envelope, 

each environmental variable has additional upper and lower limits taken from the maximum and 

minimum values related to the set of occurrence points. In this model, any point can be classified 

as: Suitable, if all associated environmental values fall within the calculated envelopes; Marginal, if 

one or more associated environmental value falls outside the calculated envelope, but still within 

the upper and lower limits; and Unsuitable, if one or more associated environmental value falls 

outside the upper and lower limits. Bioclim's categorical output is mapped to probabilities of 1.0, 

0.5 and 0.0 respectively. 

The Mahalanobis distance (Sokal and Rohlf, 1995) is the maximum distance to the reference in the 

environmental space, above which the conditions will be considered unsuitable for presence. Since 

1 corresponds to the biggest possible distance between any two points in the environment space, 

setting the maximum distance to this value means that all points in the environmental space will 

have an associated probability. The probability of presence for points that fall within the range of 

the maximum distance is inversely proportional to the distance to the reference point (linear decay). 
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GARP (Stockwell and Noble, 1992) is a genetic algorithm that creates ecological niche models for 

species. The models describe environmental conditions under which the species should be able to 

maintain populations. For input, GARP uses a set of point localities where the species is known to 

occur and a set of geographic layers representing the environmental parameters that might limit the 

species' capabilities to survive. Like Maxent (see above), GARP extracts randomly background 

data, i.e. data from all the geographic surface of the study area (Stockwell and Peters, 1999), 

including pixels with and without species records. 

Maxent (Phillips et al., 2004, 2006) or Maximum Entropy model is a general-purpose machine 

learning method, which is particularly well suited to noisy or sparse information and capable of 

dealing with continuous and categorical variables at the same time. Essentially, Maxent chooses the 

model with the maximum entropy, i.e. the one that produces the most uniform distribution but still 

infers as accurately as possible the observed data (e.g. maximize entropy for a given chi-squared 

value). Maxent estimates the range of a species with the constraint that the expected value of each 

variables (or its transform and/or interactions) should match its empirical average, i.e. the average 

value for a set of sample points taken from the species-target distribution. Maxent randomly selects 

uniformly distributed  data from the background squares, i.e. including either pixels with or without 

species presence (in fact, all presences are included in the data extracted from the background). It 

uses until 10 000 background points in an iterative way. In each iteration, it learns and improves the 

model. Maxent stops normally after 500 iterations, when the maximum entropy distribution is 

reached. Therefore, Maxent cannot be considered a pseudoabsence method, but a background 

method (Phillips et al., 2009). Maxent was run randomly selecting 75% of the presence records as 

training data and 25% as test data. Hence, the arithmetic average and the standard deviation of a set 

of 10 models was calculated through an iterative process (Araújo and New, 2007; Martínez-Freiría 

et al., 2008; Phillips and Dudik, 2008). 

Bioclim, Mahalanobis distance and GARP were performed using openModeller software (Sutton et 
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al., 2007; www.openmodeller.org); Maxent models were developed with Maxent 3.2.1 software 

(http://www.cs.princeton.edu/~schapire/maxent). All models calculated the species' realized niche 

(sensu Sillero, 2011). 
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Supplementary Table 1: Description, origin, datasets, and units of the ecogeographical variables 

from ground-based maps. Three data sources were combined in two datasets: GrB-L, with variables 

from León-Llamanzares (1991) and the DEM; and GrB-W, with variables from Worldclim series 

and the DEM. All variables were aggregated to a spatial resolution of 1 km2. Ad.= Adimensional. 

Variables Origin Datasets Units 

Variability of deficit lower than 50 mm in 

Jun 

León Llamazares, 1991 GrB-L % 

Variability of deficit lower than 50 mm in 

October 

León Llamazares, 1991 GrB-L % 

Annual duration of the hot period León Llamazares, 1991 GrB-L nº days 

Annual duration of the cold period León Llamazares, 1991 GrB-L nº days 

Annual Duration of the dry period León Llamazares, 1991 GrB-L nº days 

Annual potential evapotranspiration León Llamazares, 1991 GrB-L mm 

Annual mean temperature León Llamazares, 1991 GrB-L ºC 

Winter mean precipitation León Llamazares, 1991 GrB-L mm 

Autumn mean precipitation León Llamazares, 1991 GrB-L mm 

Summer mean precipitation León Llamazares, 1991 GrB-L mm 

Nº days of October included in the cold 

period 

León Llamazares, 1991 GrB-L nº days 

Annual mean precipitation Worldclim GrB-W mm 

Annual minimum precipitation Worldclim GrB-W mm 

Annual maximum of maximum temperature Worldclim GrB-W ºC 
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Coldest month temperature Worldclim GrB-W ºC 

Altitude a.s.l. DEM Topographic maps GrB-W m 

Orientation DEM Topographic maps GrB-L/GrB-W Radian

s 

Slope DEM Topographic maps GrB-W ºC 
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Supplementary Table 2: Description, origin, units and spatial resolution of the ecogeographical 

variables collected from satellite imagery. 

Variables Origin Units Spatial resolution 

Radiance Landsat 5 TM Wm-2 rad-1 30 m 

Land surface temperature from Thermal channel 6 Landsat 5 TM ºC 30 m 

NDVI Landsat 5 TM Ad. 30 m 

Water from supervised classification Landsat 5 TM Ad. 30 m 

Agriculture fields from supervised classification Landsat 5 TM Ad. 30 m 

Dehesa from supervised classification Landsat 5 TM Ad. 30 m 

Holm-oak from supervised classification Landsat 5 TM Ad. 30 m 

Shrub from supervised classification Landsat 5 TM Ad. 30 m 

Pines from supervised classification Landsat 5 TM Ad. 30 m 

Grassland from supervised classification Landsat 5 TM Ad. 30 m 

Grown vegetation from supervised classification Landsat 5 TM Ad. 30 m 

Altitude a.s.l. SRTM Radar DEM m 100 m 

Orientation SRTM Radar DEM Radians 100 m 

Slope SRTM Radar DEM % 100 m 

All variables were aggregated to a pixel size of 1 km2. Ad.= Adimensional. 
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Supplementary Table 3: Values of the coefficient a0 and a1 for the calculation of the each radiance 

channel (Lk). 

Channel a0,k a1,k 

1 -1.5 0.602 

2 -2.8 1.17 

3 -1.2 0.806 

4 -1.5 0.815 

5 -0.37 0.108 

6 0.124 0.00563 

7 -0.15 0.057 
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Supplementary Figure 1: Examples of two climatic variables obtained from ground-based maps. 

Annual mean temperature, in degrees Celsius (A and B), and annual mean precipitation, in mm (C 

and D). Variables were initially vectorized from the ground-based map scanned images (a and c) 

and afterwards the corresponding vector lines were rasterized in the Landsat scene for the study 

area (B and D). The pixels that intersected the vector lines maintained the original value, and the 

pixels located between two vector lines had its mean value assigned. See the Supplementary Table 1 

for details about the variables. 

 

Supplementary Figure 2: Six examples of variables obtained from satellite imagery. (A) NDVI; 

(B) radiance; (C) land surface temperature; (D) holm-oak map; (E) grown vegetation map, from 

Landsat 5 Thematic Mapper (TM); and (F) altitude, from the Shuttle Radar Topographic Mission 

(SRTM). See Supplementary Table 2 for details about the variables. 
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Figure S1 
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Figure S2 

 

 

 

 

 

 

 

 

 


