Supplementary data S1

Ground-based map data

Three data sources were used to calculate grouseilraap models: (1) a bioclimatic atlas of
Salamanca (Le6n Llamazares, 1991); (2) the WorntdGEries (Hijmans et al., 2005;

http://www.worldclim.org); and (3) a Digital Elevation Model (DEM) built thithe contour lines

of 1:50000 topographic maps by the Junta de Castilledén (Spain). These three data sources were
combined in two datasets: GrB-L, with variablesiirfLe6n Llamazares, 1991) and the DEM; and
GrB-W, with variables from Worldclim series and DEM.

Altitude was obtained from a Digital Elevation Mé@BEM) built with the contour lines of

1:50000 topographic maps by the Junta de Castlledn (Spain). Slope and orientation (in
radians) were derived with the Spatial Analyst egien of Arcinfo 9.2. These variables were
aggregated from their original pixel size (50 m)Ltent using the Aggregate function of Arclnfo
9.2. The new aggregated pixel was calculated byhroéthe original pixels. Only variables with a
correlation lower than +0.8 were included in thewgrd-based map models. Therefore, only Slope
was included in models performed with Leon Llamasarvariables (that is, GrB-L dataset;
Supplementary Table 1; Ledn Llamazares, 1991)tuald, Slope and Exposition were included in
models performed with Worldclim variables (that@&B-W dataset; Supplementary Table 1;
Hijmans et al., 2005).

A total of 11 climatic variables were collectedrfrgLe6n Llamazares, 1991; Supplementary Table
1). These were scanned into images, georeferersied six points of known coordinates (two
middle points and the four map corners), in thel@ic9.2 software, and automatically vectorised
with the ArcScan extension, as well as transforineraster file with a pixel size of 1 Krtsee
variable example in Supplementary Figure 1). Thgiral value of the vector line was maintained

in the pixels that intersected the vector line. htean value of two vector lines were assigned to



the pixels located between that two vector linegp(flementary Figure 1). Finally, the GrB-L
dataset included 12 variables.

A total of 4 climatic variables were collected fraforldclim series (Supplementary Table 1).
Worldclim variables (monthly precipitation and mearnnimum, and maximum temperature) are
interpolated climate surfaces for global land afeasluding Antarctica) at a spatial resolution of
30 arc s (1 ki), gathered from a variety of sources and the 12608 period. The monthly
variables were aggregated in mean and minimumatatton; maximum of maximum

temperature; and coldest month temperature. FirtayGrB-W included 7 variables.

Satelliteimagery data

Altitude was obtained from the SRTM. Slope andmaéon (in radians) were obtained with the
same methodology used for the other DEM (Suppleangiiable 2 and Supplementary Figure 2).
A cloud-free and snow-free Landsat-5 TM scene (a8 row 32) acquired on Jun 23, 1999 was
selected, extracting a subset of 2552 rows and B8&4 (upper left corner: 146502, 4564957;
lower right corner: 243762, 4439317, UTM coordiisatd he scene was corrected with the Fast
Atmospheric Correction Algorithm (ATCOR) (Richté991); georeferenced to the UTM

coordinate system (Datum Europeum 1950 for SpainPartugal) with the Thin Plate Spline
algorithm using 102 control points from 1:50 00pdgraphic maps, located in recognizable human
structures; and resampled to a 30 m spatial resnlutith the nearest neighbour method, in order to
maintain the original pixel values (Chuvieco, 2Q0)e root-mean square (RMS) error in the
geometric registration was lower to one pixel. Ehgansformations were made using the
GCPWorks package of PCI software.

From the Landsat 5 TM image four variables weraioled (Supplementary Table 2,
Supplementary Figure 2): Radiance, Land Surfacepéeature (LST), Normalized Difference

Vegetation Index (NDVI), and a Land cover map.



1) Radiance, was calculated, as a indirect meadunsolation, with the expression (Chuvieco,
2000):

L sensor @0 kta k NDy,

where LsensorkiS the radiance of a particular sensor in a k nbhra and a are specific coefficients
for each spectral sensor channel (Supplementarg Bapand NI the digital number of the pixel

k. The total radiance ¢l was the sum of all k radiances, except the thecimnnel 6, excluded
because it has a lower spatial resolution (120 m).

2) Land Surface Temperature was derived from tmnge of the thermal channel using the Fast
Atmospheric Correction Algorithm (ATCOR; Richtef41).

3) Normalized Difference Vegetation Index (NDVI) svealculated from the radiance values of
channels 3 and 4 (Tucker, 1979):

NDVI=(IRC-R)/(IRC+R),

where IRC is the near infra-red channel 4 andtRaged channel 3.

4) To make the Land cover map, the study area vs#ed several times to map the vegetation,
drawing the vegetation polygons on two prints &@B composition with the 4-3-5 channels of the
Landsat 5 TM sensor. An average of three trainieig$ for a minimum of 500 pixel extension
were selected for each land cover type: water, iakn-oak, ‘dehesa’ (an open forest exploitation
with agriculture and cattle use), grown vegetatghrub, meadow, grown agriculture fields,
ploughed agriculture fields, abandoned agriculfiglels, and ground. Principal Component
Analysis (PCA) was performed in order to reducertbmber of variables into few uncorrelated
vectors (Sokal and Rohlf, 1995), selecting the fin® principal components that explained the
98.9% of variance. A Maximum Likelihood supervisgassification was produced with the two
PCA components and the NDVI (Chuvieco, 2000). T¢twueacy assessment gave a value of 70% .
Each vegetation type was exported to a new chamhele pixels of a given vegetation type were

reclassified as 1 and remaining pixels as 0. Theeables related with agriculture fields were



combined in a unique one, called agriculture fi€lBispplementary Table 2).

The 14 satellite imagery variables were aggregfteu their original pixel size (30 m) to 1 Km
using the Aggregate function of Arcinfo 9.2. Theweggregated pixel was calculated by mean of
the original pixels. Therefore, each land covesglehanged from categorical variable (i.e. the
presence/absence of a particular land cover das®)ntinuous variable (i.e. density of this class

a particular pixel).

M odelling techniques

Bioclim (Nix, 1986) uses mean and standard devidioo each environmental variable separately
(assuming normal distribution) to calculate biod@im envelope associated to the occurrence
points. Each variable has its own envelope repteddsy the interval [m - c*s, m + c*s], where 'm’
is the mean; 'c' is the cut-off input parameted ahis the standard deviation. Besides the epeelo
each environmental variable has additional uppédrawver limits taken from the maximum and
minimum values related to the set of occurrencatgoin this model, any point can be classified
as:Quitable, if all associated environmental values fall witkthe calculated envelopedarginal, if
one or more associated environmental value faliside the calculated envelope, but still within
the upper and lower limits; andhsuitable, if one or more associated environmental value fal
outside the upper and lower limits. Bioclim's categal output is mapped to probabilities of 1.0,
0.5 and 0.0 respectively.

The Mahalanobis distance (Sokal and Ronhlf, 199%)@asmaximum distance to the reference in the
environmental space, above which the conditionsheilconsidered unsuitable for presence. Since
1 corresponds to the biggest possible distancedaetany two points in the environment space,
setting the maximum distance to this value meaatsath points in the environmental space will
have an associated probability. The probabilitpraisence for points that fall within the range of

the maximum distance is inversely proportionah® distance to the reference point (linear decay).



GARP (Stockwell and Noble, 1992) is a genetic atgor that creates ecological niche models for
species. The models describe environmental conditimder which the species should be able to
maintain populations. For input, GARP uses a s@baft localities where the species is known to
occur and a set of geographic layers represertimegnvironmental parameters that might limit the
species' capabilities to survive. Like Maxent (@8beve), GARP extracts randomly background
data, i.e. data from all the geographic surfacghefstudy area (Stockwell and Peters, 1999),
including pixels with and without species records.

Maxent (Phillips et al., 2004, 2006) or Maximum By model is a general-purpose machine
learning method, which is particularly well suitednoisy or sparse information and capable of
dealing with continuous and categorical variableh@a same time. Essentially, Maxent chooses the
model with the maximum entropy, i.e. the one thratipces the most uniform distribution but still
infers as accurately as possible the observed(dagamaximize entropy for a given chi-squared
value). Maxent estimates the range of a specidstive constraint that the expected value of each
variables (or its transform and/or interactiong)udd match its empirical average, i.e. the average
value for a set of sample points taken from theigsetarget distribution. Maxent randomly selects
uniformly distributed data from the backgrounda®s, i.e. including either pixels with or without
species presence (in fact, all presences are idludthe data extracted from the background). It
uses until 10 000 background points in an iteratrag. In each iteration, it learns and improves the
model. Maxent stops normally after 500 iteratiomisen the maximum entropy distribution is
reached. Therefore, Maxent cannot be consideresg@dpabsence method, but a background
method (Phillips et al., 2009). Maxent was run @mty selecting 75% of the presence records as
training data and 25% as test data. Hence, thHawetic average and the standard deviation of a set
of 10 models was calculated through an iterative@ss (Aradjo and New, 2007; Martinez-Freiria
et al., 2008; Phillips and Dudik, 2008).

Bioclim, Mahalanobis distance and GARP were pergmmsing openModeller software (Sutton et



al., 2007 www.openmodeller.ong Maxent models were developed with Maxent 3.2fiwsare

(http://www.cs.princeton.edu/~schapire/majeAtl models calculated the species' realized aich

(sensu Sillero, 2011).
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Supplementary Table 1: Description, origin, datssatd units of the ecogeographical variables
from ground-based maps. Three data sources werbigedin two datasets: GrB-L, with variables
from Ledn-Llamanzares (1991) and the DEM; and GrBalith variables from Worldclim series

and the DEM. All variables were aggregated to diabaesolution of 1 krh Ad.= Adimensional.

Variables Origin Datasets Units
Variability of deficit lower than 50 mm in  Leodn Llamazares, 1991 GrB-L %
Jun

Variability of deficit lower than 50 mm in  Leodn Llamazares, 1991 GrB-L %
October

Annual duration of the hot period Ledn Llamazaf&1 GrB-L n° days
Annual duration of the cold period Ledn Llamazaf91l GrB-L n° days
Annual Duration of the dry period Ledn Llamazark391 GrB-L n° days
Annual potential evapotranspiration Ledn Llamazat€@91 GrB-L mm
Annual mean temperature Lebn Llamazares, 1991 GrB-L °C
Winter mean precipitation Ledn Llamazares, 1991 -GrB mm
Autumn mean precipitation Led6n Llamazares, 1991 -GrB mm
Summer mean precipitation Ledn Llamazares, 1991 -IGrB mm

N° days of October included in the cold Ledn Llamazares, 1991 GrB-L n° days
period

Annual mean precipitation Worldclim GrB-W mm
Annual minimum precipitation Worldclim GrB-W mm
Annual maximum of maximum temperature Worldclim GAB °C



Coldest month temperature Worldclim GrB-W °C

Altitude a.s.l. DEM Topographic map&rB-W m

Orientation DEM Topographic map&rB-L/GrB-W  Radian
s

Slope DEM Topographic map&rB-W °C




Supplementary Table 2: Description, origin, unitd apatial resolution of the ecogeographical

variables collected from satellite imagery.

Variables Origin Units Spatial resolution
Radiance Landsat 5 TM Wm-2 rad-130 m
Land surface temperature from Thermal channel 6 d&an5 TM °C 30m
NDVI Landsat 5 TM Ad. 30 m
Water from supervised classification Landsat 5 T™M d A 30m
Agriculture fields from supervised classification andsat5 TM Ad. 30m
Dehesa from supervised classification Landsat5 TM Ad. 30 m
Holm-oak from supervised classification Landsat\d T Ad. 30 m
Shrub from supervised classification Landsat 5 TM d. A 30 m
Pines from supervised classification Landsat 5 TM d. A 30 m
Grassland from supervised classification Landsawvis Ad. 30m
Grown vegetation from supervised classification  dsat5TM Ad. 30m
Altitude a.s.l. SRTM Radar DEM m 100 m
Orientation SRTM Radar DEM Radians 100 m
Slope SRTM Radar DEM % 100 m

All variables were aggregated to a pixel size &frf. Ad.= Adimensional.
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Supplementary Table 3: Values of the coefficienaa al for the calculation of the each radiance

channel (Lk).

ChannelaO,k al,k

1 -1.5 0.602
2 -2.8 1.17

3 -1.2 0.806
4 -1.5 0.815
5 -0.37 0.108

6 0.124 0.00563
7 -0.15 0.057
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Supplementary Figure 1: Examples of two climatic variables obtained frorowgrd-based maps.
Annual mean temperature, in degrees Celsius (ABandnd annual mean precipitation, in mm (C
and D). Variables were initially vectorized fronetground-based map scanned images (a and ¢)
and afterwards the corresponding vector lines wasterized in the Landsat scene for the study
area (B and D). The pixels that intersected théordimes maintained the original value, and the
pixels located between two vector lines had itsimedue assigned. See the Supplementary Table 1

for details about the variables.

Supplementary Figure 2: Six examples of variables obtained from satelitagery. (A) NDVI;
(B) radiance; (C) land surface temperature; (Djriobk map; (E) grown vegetation map, from
Landsat 5 Thematic Mapper (TM); and (F) altituaent the Shuttle Radar Topographic Mission

(SRTM). See Supplementary Table 2 for details abiwaivariables.
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Figure S1
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Figure S2
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