Table of Contents

Metaphor-Based Values in Scientific Models Mark Johnson	1
Analogy in Scientific Discovery: The Case of Johannes Kepler Dedre Gentner	21
Model Experiments and Models in Experiments <i>Mary S. Morgan</i>	41
Models, Simulations, and Experiments Francesco Guala	59
Calibration of Models in Experiments Marcel Boumans	75
The Development of Scientific Taxonomies Hanne Andersen	95
Production, Science and Epistemology. An Overview on New Models and Scenarios Simone Turchetti, Mauro Capocci, Elena Gagliasso	113
Modeling Practices and "Tradition" Elke Kurz-Milcke and Laura Martignon	127
Modelling Data: Analogies in Neural Networks, Simulated Annealing and Genetic Algorithms Daniela M. Bailer-Jones and Coryn A.L. Bailer-Jones	147

xi

Perceptual Simulation in Analogical Problem Solving David L. Craig, Nancy J. Nersessian, and Richard Catrambone	167
Building Demand Models to Improve Environmental Policy Process Bryan G. Norton	191
Toward a Computational Model of Hypothesis Formation and Model Building in Science Joseph Phillips, Gary Livingston, and Bruce Buchanan	209
Models as Parts of Distributed Cognitive Systems Ronald N. Giere	227
Conceptual Models, Inquiry and the Problem of Deriving Normative Claims from a Naturalistic Base <i>Andrew Ward</i>	243
Dynamic Imagery: A Computational Model of Motion and Visual Analogy David Croft and Paul Thagard	259
Model-Based Reasoning and Similarity in the World <i>Qiming Yu</i>	275
Epistemic Artifacts: Michael Faraday's Search for the Optical Effects of Gold <i>Ryan D. Tweney</i>	287
Epistemic Mediators and Model-Based Discovery in Science Lorenzo Magnani	305
Deterministic Models and the "Unimportance of the Inevitable" <i>Claudio Pizzi</i>	331
A Cognitive Development Approach to Model-Bases Reasoning Stella Vosniadou	353
Modeling Core Knowledge and Practices in a Computational Approach to Innovation Process <i>Stefania Bandini and Sara Manzoni</i>	369
Author Index Subject Index	391 399

xii