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Abstract

There is a general agreement about the need of identifying a high-level

conceptual design in knowledge based systems that is behind the im-

plementation. A number of perspectives for understanding knowledge

based systems at this high level has been proposed. Major examples of

these perspectives are based on the concept of Heuristic Classi�cation,

Deep-Shallow Systems, Problem Solving Method, and Generic Task.

Each of these ideas focuses on a particular feature of reasoning: the

inference structure, the models of domains knowledge, the sequence of

actions need to solve a problem, and the task features.

This paper presents a new abstraction paradigm aiming at unify-

ing these di�erent perspectives. The proposed model should be able

to account for all of the conceptual features of knowledge based sys-

tems, thus making clear which features are intrinsic to the problem

and which are artifacts of the implementation. Our proposal is there-

fore based on a two levels analysis of knowledge based systems: an

epistemological and a computational level. At the �rst level, ontology

and inference model of a knowledge based system have to be de�ned.

Ontology represents the conceptual model of domain knowledge, while

the inference model is the conceptual representation of the inference

structure needed to solve a problem or to execute a task by managing

that ontology. At the computational level, methods and formalisms

should be adopted after the epistemological analysis has been carried
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out and taking into account the constraints which derive from the con-

ceptual structure of the domain knowledge, patterns of inference, and

tasks to be executed.

We constrained our study to medicine and identi�ed three generic

tasks: diagnosis, therapy planning, and monitoring. The main result

of this analysis is that these generic tasks manage di�erent ontologies,

but can be executed exploiting a unique inference model. Such a model

involves three di�erent inference types (abduction, deduction, and in-

duction) and is described in some details. Finally, computational issues

are discussed to argue that the present model provides a conceptual

view on existing systems, and some design insights for future ones.

1 Introduction

Much of the earlier work in Arti�cial Intelligence (AI) occurred in the

very active medical AI community of the 1970s. The best-known medi-

cal knowledge-based systems (KBS) of this era were PIP [1], CASNET [2],

MYCIN [3], and INTERNIST-1 [4]. Although these KBS used di�erent

methods and formalisms for representing and managing knowledge, none

of them exploited any genuine pathophysiological theory but only empir-

ical associations between manifestations and diseases [5]: the elements of

medical knowledge embedded in their knowledge bases were nothing more

than pragmatic constructs [6] codifying previously practical experiences of

domain experts.

The opinion that these systems had serious limitations has begun to arise

in the early of 1980s [7]. Namely, they were often judged as brittle, since they

exhibited a sudden performance degradation when the problem at hand was

near or beyond the limits of their domain knowledge (i.e. when they did not

contain any piece of knowledge covering exactly the question they were asked

about) [8]. A graceful performance degradation | as it happens with human

experts [9,10] | would be more desirable. Moreover, these systems were not

able to generate satisfactory explanations [11,12], since they could only show

the pragmatic constructs composing their own knowledge bases. In addition,

they were unable to solve \novel" problems, i.e. problems which the designer

of the KBS did not anticipate while building the system [5]. Finally, there

were several di�culties in acquiring and maintaining their knowledge bases,

because the systems needed the heuristic insight of a domain expert more

than mere domain knowledge. Hence, knowledge acquisition has come to

be seen as the bottleneck in the knowledge engineering process [13], since
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these pragmatic constructs involved tacit assumptions and nonarticulable

skills whose acquisition was quite di�cult.

Several researchers [13,14,15] claim that solutions for these problems may

be achieved through a suitable design of the conceptual architecture before

starting any implementation activity. This level of design has been called

knowledge level [16], and it has been clearly separated from the computa-

tional level. The knowledge level focuses on the structures and contents of

knowledge and it is independent to the implementation, while the compu-

tational level deals with methods and formalisms exploited to implement a

working system.

At the knowledge level, four main approaches have been proposed dur-

ing the last decade in order to provide a theoretical foundation of KBS [15].

These approaches are based, respectively, on the concepts of Heuristic Clas-

si�cation [17], Deep-Shallow system [18], Problem-Solving Method [19,20],

and Generic Task [21]. They are usually regarded as abstraction paradigms

leading to rational reconstructions of KBS. However, their formulation does

not represent only a theoretical problem but also a fundamental step in KBS

design.

Heuristic Classi�cation provides a theoretical framework for KBS stress-

ing features and properties of heuristic reasoning (experiential reasoning in

the Heuristic Classi�cation's lexicon) that a KBS should develop. As an ab-

straction paradigm, heuristic classi�cation focuses on the inference structure

underlying expertise. There are several advantages in an analysis focusing

on inference structures: it allows to identify basic components of heuristic

pathways by highlighting features that are beyond the domain knowledge

and, therefore, it shows similarities and di�erences across di�erent prob-

lem types and application domains. Systems such as NEOMYCIN [22] and

GUIDON [23] have been developed following the heuristic classi�cation ab-

straction paradigm.

Another abstraction paradigm | based on the dicotomy Deep-Shallow

Systems | focuses on the theoretical structure and contents of domain

knowledge, instead of inference structure. A system is said to be deep when

the problem solver works on an explicit symbolic representation of the struc-

ture and behavior of the underlying pathophysiological system, while this

type of knowledge is only implicitly represented in a shallow system. Fol-

lowing earlier remarks made by Davis [5], several authors pointed out that

the domain knowledge becomes explicit and more accessible when the in-

ference structure is separated as much as possible from the domain knowl-

edge. However, in order to exploit domain knowledge in a suitable way, a
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domain-independent inference structure needs to be designed. As Levesque

[24] pointed out, representing explicitly and separately domain knowledge

and inference structure leads to assume that there is a calculus of thought

manipulating knowledge independent from its contents. Thus the de�ni-

tion of the inference structure turns out as a fundamental task also for the

Deep-Shallow system approach.

The paradigm based on the concept of Problem Solving Method is a

knowledge level characterization of the sequence of actions that enables the

agent to execute a certain task in a speci�c domain. A problem solving

method is usually de�ned by some mechanisms (1) to generate a set of can-

didate actions and (2) to select among these candidates the action to be

executed. For instance, diagnosis [25] can be viewed as a process of covering

and di�erentiating (i.e. (1) �nd possible diseases covering most symptoms

and (2) di�erentiate between he remaining explanations) and construction

[20] as a process of proposing and revising solutions (i.e. (1) propose a par-

tial solution and (2) revise solution by resolving violated constraints). One

of the most interesting results of this approach is the claim that each of

these problem solving methods needs to �ll domain knowledge into some

method-speci�c roles: diagnosis, for instance, requires knowledge about the

relationships linking symptoms to possible diagnosis and additional symp-

toms to further di�erentiate. Hence, domain knowledge may be no longer

regarded as independent from its concrete use in the problem solving pro-

cess, as in deep systems. However, domain knowledge is still explicitly and

separately represented and this allows us to gain the advantages of main-

tenability and systematicness of domain knowledge.

The basic idea underlying Generic Tasks approach is that every real

world complex task may be decomposed into simpler subtasks, having in-

put/output relations between them. Each task falls into major classes of

tasks, named generic tasks. Chandrasekaran identi�ed a small set of generic

tasks, such as interpretation, classi�cation, diagnosis, design, and so forth.

These generic tasks represent basic elements in the conceptual architecture

of a KBS, and they show similarities across application domains. MDX [26]

was the �rst medical KBS developed within the generic task framework.

Besides their di�erences, all these abstraction paradigms, Heuristic Clas-

si�cation, Deep-Shallow Systems, Problem Solving Methods, and Generic

Tasks, are not alternative each other. Clancey [17] showed how heuristic

classi�cation may be useful in building a deep system as GUIDON; Chan-

drasekaran [27] stressed that the generic task approach may allow us to

develop a deep system and that the concept of generic task may involve
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the de�nition of a suitable inference structure [28]. MDX-II provides an

example of a deep system developed following the generic task approach.

On the other hand, a deep system such as NEOCRIB [29] has been de-

scribed in terms of the generic tasks it executes. Finally, domain knowledge

is explicitly and separately represented in MOLE [25], a tool for developing

KBS based on the cover-and-di�erentiate method, that is a speci�c problem

solving method.

This paper presents a new abstraction paradigm which starts from the

well-known knowledge/computational level distinction and tries to exploit

inference structure, domain knowledge and task features in order to provide

a uni�ed knowledge level analysis of KBS. The basic idea is to provide an

epistemological framework able to subsume and integrate these knowledge

level approaches. Therefore, we replaced it with the term epistemological

level. Conceptual features of tasks, inference structure and domain models

fall into this level and the dichotomy knowledge/computational level becomes

the dichotomy epistemological/computational level.

The reminder of this paper is structured as follows. Section 2 will be

devoted to develop our uni�ed epistemological analysis of KBS components.

Then, we will argue that a unique inference structure, called Select and Test

Model, underlies medical reasoning. Finally, we will discuss some computa-

tional issues in order to show that the present model provides a conceptual

view on existing systems, and some design insights for building future ones.

2 The Epistemological Level

A KBS contains two main types of knowledge: knowledge about the domain

and knowledge about inference procedures which have to be exploited to

solve a problem. An epistemological analysis focuses on the conceptual fea-

tures of these high-level components of KBS, that is on the de�nition of the

underlying ontology and inference model. The result of including these two

components at the epistemological level is outlined in Figure 1. Ontology

represents the conceptual model of entities and relationships composing the

domain knowledge, while the inference model is the conceptual representa-

tion of the inference structure employed to execute a task by managing that

ontology. Abduction, deduction and induction represent the basic elements

of the inference model of medical reasoning described in the next section.

The computational level has been broken down into two parts: methods

and formalisms. This outlines one of the major issue addressed by this
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Figure 1: A schematic representation of the two level analysis of Knowledge

Based Systems and elements belonging to each level.

paper: di�erent disciplines (such as logic, mathematics, decision theory,

and AI) may provide suitable formalisms for building KBS able to solve real

medical problems.

In medical reasoning, however, the task to be executed is actually re-

garded as an aggregate of sub-tasks pursuing di�erent goals. Several re-

searchers [30,31] argued that the main goal of medical reasoning is to modify

the current abnormal state of a�airs in a patient, that is to suggest ther-

apeutic treatments or, at least, prognostic forecast given a speci�c disease

and/or treatment, rather than provide insight. This very tough goal requires

the execution of the following three tasks: diagnosis, therapy planning and

monitoring [32,33,34]. We claim that these basic tasks manage di�erent

ontologies, but they can be executed exploiting a unique inference model.

2.1 Ontology

Contemporary analytical philosophy calls ontology the conceptual de�nition

and cataloguing of entities and relationships existing in the world, or, at

least, in our ways of conceiving the world. It has been widely investigated

by Strawson [35] who developed a general theory of conceptual schemas of

conceiving worlds. This theory has been shown to be useful in understanding

much of the work in medical KBS [36]. Several researchers pointed out

the important role of ontology in di�erent AI domains, such as qualitative

reasoning [37], non monotonic reasoning [38], knowledge-base theory [39,40].

2.1.1 Entities and Relationships

An ontology allows us to conceive a uni�ed abstract scheme where things,

states, actions, causes and events may be de�ned, enumerated, and repre-

sented as generic terms. This property ful�lls the requirements of an episte-

mological analysis of a KBS and ontology may be regarded as the conceptual

model of the embedded domain knowledge.

We distinguish two basic classes of elements in an ontology: entities and

relationships between entities. For instance, �ndings, diseases, and therapies

7



may be entities in the ontology of a medical KBS, while causality and type-

subtype may be relationships.

The separation between ontology and inference model should allow us

to represent ontology in a KBS (i.e. KBS ontology) as well as it is orga-

nized in the scienti�c medical knowledge (i.e. source ontology). Following

McCarthy and Hayes [41], we call this feature \representational adequacy".

This representational adequacy allows us to represent genuine theory of dis-

eases, when available, or, at least, to deeply exploit features of the available

domain knowledge in order to generate satisfactory explanations, to solve

unexpected problems, and to simplify the process of acquiring and main-

taining domain knowledge.

In this sense we claim that �rst generation KBS exploited no real theories

of diseases. Indeed, pragmatic constructs mapping manifestations into dis-

ease entities loose their original organization in the scienti�c medical knowl-

edge (as it is set out in medical textbooks). The need for an e�cient ex-

ploitation of medical knowledge often forced KBS developers to represent

domain knowledge according to the conceptual limits imposed by the in-

ference processes to be applied to execute a task. In such a case, ontology

is said to be compiled [18,42] into an inference model, that is it becomes

implicit. The results of such a compilation are pragmatic constructs.

2.1.2 KBS Ontologies

Several studies [4,6] have pointed out that there are two main ways of or-

ganizing medical knowledge, that is, there are two main kinds of source on-

tology: a causal and a taxonomic ontology. We are interested in analysing

how these source ontologies can be translated into a KBS ontology.

Causal ontologies. According to several authors, a causal ontology is a

de�nitional character of deep systems [7,43]. Unfortunately, exactly what

constitutes causal knowledge and, therefore, a causal ontology was never

made clear. Philosophical tradition has not synthesized any coherent and

widely accepted de�nition of causality and, as Karp and Wilkins [12] pointed

out, when AI authors provide few clues to what they believe causality is, it is

di�cult to accept any claim about its lack in some KBS. Nevertheless, several

systems have been developed to represent some kind of causal ontology and

we will try to investigate features of a causal ontology analysing how it has

been represented in KBS.
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There are at least two alternative ways of representing a causal ontol-

ogy [6,44]. Firstly, they have been represented as a network, where nodes

represent states and events occurring in the patient and links a causal re-

lation between them. This kind of causal ontology has been exploited in

some earlier medical KBS, such as CASNET and CADUCEUS [45]. Simon

[6] stressed the "qualitative" nature of these representations, that seems

to be closest to the clinical way of thinking than usual quantitative mod-

els provided by mathematics. But such an approach appears too weak to

represent a genuine biomedical theory because it relates state to state and

event to event, without describing structure and laws of behavior of the the

underlying pathophysiological systems. This causal ontology is not able to

provide both a description of the the normal behavior and the evolution

from normal to abnormal behavior under the action of a given pathogenetic

disturbance. This approach to causal ontology has been strongly enhanced

by Patil developing ABEL [46]: diseases and pathophysiological states are

represented at di�erent levels of detail. Some of the highest level nodes

may be expressed at next level in greater detail. This e�ort has been moti-

vated by the computational advantages given by the possibility of exploiting

multi-level description of a pathophysiological system, if needed, but the real

theoretical challenge here was to represent a low-level description of the sys-

tem and, therefore, genuine pathophysiological theories. Unfortunately, also

ABEL's pathophysiological level is constituted by a network of states and

not by a description of structure and behavior of the system. The main

di�erence between knowledge represented at the clinical level and that rep-

resented at lower levels lies in the granularity of knowledge rather than in

their ontological features.

An alternative way of representing a causal ontology should describe

structure and behavior of underlying systems. This approach has been

widely exploited for diagnosing faults in circuits and physical devices and

it seems to be closer to the current AI interpretation of causality than the

state-to-state approach. In this approach, the causal relation links variables

rather than states. These variables represent attribute of the system to be

modeled, and a causal relation represents the fact that a change of a vari-

able produces a change in another variable. By describing the structure and

the behavior of a system, this approach would allow us to represent genuine

would genuine biomedical theories as proposed in medical literature: patho-

physiological situation can be interpreted as the e�ect of some perturbations

occurring in some system variables. However, in a real clinical setting, physi-

cians usually lack of a complete description of the internal structure of the
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patient. Nonetheless, physicians do appear to be able to reason with models

of structure and behavior of the system [47] since they use qualitative mod-

els [48,49,47]. This qualitative approach has been applied to model some

pathophysiological systems in medical KBS using QSIM [44,50]. QSIM [47]

provides a descriptive language, consisting of qualitative constraints that

abstract the relationships in a di�erential equation, to represent the struc-

ture of a pathophysiological system and a simulation algorithm to infer its

qualitative behavior. Moreover, from the ontological point of view, qualita-

tive modelling seems to be more adequate to represent genuine biomedical

theories, since it captures both the sistematicness of a model of structure

and behavior and the qualitative attitude of reasoning showed by physician.

Taxonomic ontologies. Unfortunately, in many medical domains these

models of structure and these laws of behavior are still unknown or, at least,

incomplete and controversial. In such a case, the source ontology is orga-

nized in a taxonomic way; disease entities are hierarchically set out and

empirically de�ned as clusters of manifestations [4,6], and no knowledge of

underlying mechanism is available. These ontologies are typically repre-

sented as prototypes rather than as conditions for transition from a state

to another [51]. This kind of ontology is de�ned as "taxonomic" because

the relation of subsumption is the leading one: a concept (for example, a

disease entity) is de�ned as a cluster of attributes (for example, patient's

manifestations) and it is placed above those concepts that it subsumes (i.e.

the set of manifestations de�ning the current disease entity is superset of

those sets de�ning subsumed disease entities) and below those that subsume

it (i.e. the set of manifestations de�ning the current disease entity is sub-

set of those sets de�ning disease entities which subsume it). This de�nition

may occur with exceptions, so justifying much of the work about inheritance

theories. An example of taxonomic KBS ontology in medical domain is the

prototypical approach followed in developing CENTAUR [52].

Notice that these de�nitions of concepts embodied in taxonomic ontolo-

gies are empirical but not pragmatic constructs: even though they are based

on the surface mapping of clusters of manifestations into disease entities

there is no inference purpose in their organization (i.e. the inference model

is not compiled into them). According to the previous de�nition of deep-

shallow systems, the presence of a taxonomic ontology in a KBS does not

lead necessarily to de�ne it as a shallow system. Since deep systems have

been de�ned as the result of separating the ontology from the inference
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model and of explicitly representing both of them, a deep system may be

built even by exploiting a taxonomic ontology. This avoids to exclude deep

systems from a wide part of medicine, where knowledge about structure

and behavior has not yet been made available. On the other hand, those

KBS which tried to exploit some kind of causal ontology, such as CASNET,

can be considered as shallow systems, because their ontology and inference

model were not fully separated. Therefore, in our opinion, a causal ontology

is neither a necessary nor a su�cient condition to build up a deep system.

Neither of these two ontological views may be a priori preferred because

KBS have to deal with a wide range of medical domains. Moreover, as

Sha�ner [53] pointed out, these two types of organization usually overlap

in the source ontology of most medical domains and the expressive power

of KBS ontologies should be measured by their ability to mirror this over-

lap as much as possible. CADUCEUS, for instance, integrates causal and

taxonomic ontologies (called "nosological models"). The same approach has

been followed by NEOANEMIA [54].

But an ontology is dumb. It is a conceptual scheme underlying domain

knowledge and providing only a static structure of entities and relationships.

Therefore, it is not able by itself to execute any task, to draw inferences

about the world or to make decisions.

2.2 Inference Model

As we have outlined above, there are twomain kinds of knowledge embedded

in a KBS: one concerns the world and the other concerns procedures able

to manage the available knowledge about the world in order to solve prob-

lems. As ontology is the conceptual model of the �rst kind of knowledge, an

inference model can be viewed as a conceptual model of the second one.

2.2.1 Inference

An inference is generally de�ned as the process of deriving true statements

(called conclusions) from other true statements (called premises). It is usu-

ally a multistep process (i.e. we often need to derive intermediate conclu-

sions). Each of these steps has to be sanctioned by an inference type, rep-

resenting a general class of procedures taking these premises as inputs and

leading to conclusions. Inference types are building blocks for an inference

model.
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2.2.2 Inference Types

According to Peirce [55], three main inference types can be distinguished:

deduction, abduction, and induction. They have been de�ned by Peirce as

fundamental and prelogic characters of reasoning. For our purpose, these

three inference types may be de�ned as follows.

Deduction. Deduction is the inference type allowing one to derive a state-

ment, given some general laws (or general rules, in Peirce's lexicon), and

some singular statements called initial conditions. Knowing the general law

"All patient a�ected by acute hepatitis manifest an increased value of serum

transaminases" and the singular statement "John is a�ected by acute hep-

atitis", one can deduce that "John manifests an increased value of serum

transaminases".

Notice that this de�nition of deduction is independent from the ontology

we choose. The general law may be viewed as a prototypical property of

acute hepatitis or as a causal relation between the state "The patient is af-

fected by acute hepatitis" and the state "The patient manifests an increased

value of serum transaminases". The general law can also be viewed as \laws

of behavior", and the singular statement as the initial situation of the sys-

tem under analysis. This ontology-independence is a common features of all

inference types.

Abduction. Abduction is the inference type which tries to identify those

initial conditions which deduction starts from, given general laws and some

singular statements called �nal states. According to Lukasiewicz [56], ab-

duction tries to "
ow backwards along a deductive chain of inferences".

Unfortunately, abduction is logically unsound since it involves a famous

logical fallacy called "A�rming the Consequent". Since its logical unsound-

ness, we said that abduction "tries" to identify initial conditions because it

is just able to "guess" these initial conditions and not to prove them. In

the previous example, an abductive inference type could infer that "John

is a�ected by acute hepatitis" starting from the general law "All patient

a�ected by acute hepatitis manifest an increased value of serum transami-

nases" and from the singular statement "John manifests an increased value

of serum transaminases", but nothing makes us sure of that, since other

initial conditions may lead to an increased value of serum transaminases,

such as miocardical infarction, or, in general, miopathies. Conclusions of an

abduction are called "hypotheses".
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Notice that the abduced statement "John is a�ected by acute hepatitis"

may be viewed as a possible explanation for the statement "John manifests

an increased value of serum transaminases". Otherwise, we have to stress

that, following the Peirce's landmark de�nition, abduction is not collapsible

on the "inference to the best explanation": "inference to the best expla-

nation" is the inference process trying to identify the best explanation for

a statement, while abduction, as an inference type, might be a building

block of such an inference process, since it makes a guess about possible

explanations.

Induction. Peirce distinguished three kinds of induction. The common

feature of all kinds of induction is the ability to compare singular statements:

induction is able to synthesize singular statements into general laws (i.e.

infer from "John is a�ected by acute hepatitis" and "John manifests an

increased value of serum transaminases" the general law stating that "All

patient a�ected by acute hepatitis manifest an increased value of serum

transaminases"), but it is also able to con�rm or falsify (i.e. to verify)

hypotheses on the basis of singular statements that can be deduced from

them.

The inference model describes a plausible sequence of inference types

applied to perform one of the above described basic tasks. Since we are

interested in automatic reasoning, we do not claim that this inference model

replicates the inference behavior of one or many human agents. From the

standpoint of the epistemological foundation of KBS, an inference model

may be de�ned as an abstract calculus acting on an ontology in order to

execute the required task.

Medical reasoning, especially when executing the diagnostic task, has

been convincingly modeled as a cycle of generating and testing hypotheses

[57,6]. However, this de�nition does not allow us to understand how these

hypotheses are generated and tested (i.e., it does not make clear which

inference types are involved in such a schema and how they work). In the

next section, we will argue that this inference model can execute the three

main tasks involved in medical reasoning and will outline how this cycle may

be interpreted as the result of chaining abduction, deduction, and induction.
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Figure 2: A schematic representation of the STModel.

3 An Epistemological Model for Medical Reason-

ing

This section describes a uni�ed epistemological model of medical reasoning.

This model is uni�ed in the sense that the same inference model | we will

call Select and Test Model (hereafter, STModel) | can execute the three

generic tasks involved in medical reasoning. We will proceed as follows: �rst

the general structure of the STModel will be described, and then we will

illustrate how inference models involved in diagnosis, therapy planning and

monitoring may be regarded as instances of the STModel.

3.1 The Select and Test Model

Advances in cognitive science have pointed out that the in a problem solving

process experts usually select a small number of hypotheses and then they

spent much time in testing and re�ning these hypotheses [58,9]. Medical

reasoning may be broken down into two di�erent phases: �rst, initial in-

formation is employed to select plausible hypotheses (hypothesis selection

phase), and then these hypotheses are used as starting conditions to forecast

expected consequences which should be matched with the state of a�airs in

the patient in order to con�rm or falsify those hypotheses which they come

from (hypothesis testing phase). Authors [59,29] agree about the utility of

analizing this schema in terms of the inference types involved in it, as shown

in Figure 2.

3.1.1 Abstraction

The process of selecting and testing hypotheses has been investigated by

several AI researcher starting from de Groot's [60] pioneering studies on

chess grand masters. A major result he achieved was that chess masters,

before generating and testing the bene�ts of possible moves on the chess-

board, undertake a preliminary recognition process in order to identify more

abstract features of the board. From the standpoint of earlier cognitive psy-

chology, this preliminary recognition process has been already conceptual-

ized by Otto Selz [61] with the notion of schematic anticipation. In medical
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problem solving, this phase corresponds to the preliminary identi�cation the

process of abstracting solution features from data. These interpretations are

made with certainty: belief thresholds, and qualifying conditions are chosen

so the abstraction is categorical in providing problem features.

3.1.2 Abduction

Starting from these problem features, abduction allows one to select plausi-

ble hypotheses. Two main kinds of abduction may be distinguished in this

hypothesis generating phase:

1. Unfocused Abduction: This takes place at the beginning of the process,

when general categories of hypotheses are selected to constrain the

range of possible solutions. We refer to such an initial step as the

formation of the initial hypothesis space.

2. Focused Abduction: This occurs when a hypothesis is selected in a

context de�ned by another hypotheses. Such a step is quali�ed as

either a re�nement of the initial given hypothesis, or a competitor or

a complement of that hypothesis.

Once hypotheses have been selected, they need to be ranked in order to speed

up the testing phase, by testing �rst some preferred hypotheses. As already

suggested by Peirce, multiple criteria may be taken into consideration for

ordering hypotheses (i.e. preference criteria). In medical domain, these

criteria could be: parsimony, danger, cost, curability, and so on. These

criteria do not provide a way to select which hypotheses can be considered

as solutions, but only a way to de�ne the order in which they are tested.

3.1.3 Deduction

After hypotheses have been abduced and ranked, the testing phase starts

to explore their consequences. Deduction allows us to derive from each

candidate hypothesis what one expects to be true if that hypothesis is true.

This kind of process is usually called prediction.

Deduction as logical consequence is the most conservative form of pre-

diction: If a is true in some worldW , then all logical consequences of a will

be true in W . Many studies have argued that the classical interpretation of

deduction as logical consequence is too weak to capture the aim of predic-

tion [62,63]. For instance, one might conclude, from the facts that you are
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stirring sugar into your hot tea and that sugar is soluble in your tea, that

the sugar will dissolve in tea. But this conclusion holds only under certain

other conditions, namely the condition "all other things being equal". The

sugar would not dissolve if it were coated with wax or if there were already

saturated solution in the tea or if other conditions occurred, some of which

one could not even envision. Therefore conclusions we obtain are defeasi-

ble and hence they fail the property of monotonicity of logical consequence

relation: once a conclusion has been drawn, it might have to be retracted

when new information establishing that condition "all other things being

equal" has been violated. Deduction we are dealing with is therefore a kind

of nonmonotonic deduction, that is the basis of much work on nonmonotonic

logics and belief revision [64].

3.1.4 Induction

Once predictions have been derived from hypotheses, they need to be matched

in order to choose the best hypothesis. Induction is able to match single

statement to single statement and, therefore, to match a single statement

derived as a prediction from a hypothesis with a single statement describing

a portion of the real state of a�airs in the patient. Since hypotheses are

ranked at the beginning of the testing phase, some hypotheses will be tested

before others according to the adopted ranking criteria. During this phase,

induction corroborates those hypotheses whose expected consequences turn

out to be in agreement with the state of a�airs in the patient and refutates

those which failed this test. Induction closes the cycle of our inference model

of medical reasoning.

The cyclic structure of the model stresses the nonmonotonic character

of medical reasoning: previous hypotheses can be withdrawn whenever new

information becomes available. As Stephanou and Sage [65] pointed out, un-

certainty and imperfect information are fundamental characteristics of the

knowledge relative to hypothetical reasoning. The nonmonotonic character

of the STModel arises not only from the above mentioned nonmonotonic

character of deductive inference type involved in it, but also from the logical

unsoundness of the ascending part of the cycle guessing hypotheses to be

tested. Doyle [66] pointed out that, since their unsoundness, these guesses

do not exhibit the truth-preservative behavior of ideal rationality charac-

terizing the incremental deduction of classical logic, but the nonmonotonic

behavior of limited rationality of commonsense reasoning [67] that allows

to discharge and abandon old hypotheses to make possible the tentative
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Figure 3: Specializing the STModelin the diagnostic task.

adoption of new ones. Notice that this adoption is not merely tentative but

rationally tentative, in the sense that, just as abduction, it is based on a

reasoned selection of knowledge [68] and on some preference criteria which

avoid the computational explosion of hypotheses generation. One of the

principal means of limiting rationality is indeed to limit e�orts by directing

attention to some areas and ignoring others. This character matches exactly

with the ability of an expert in generating a small set of hypotheses to be

carefully tested. But in such a case, the expert has to be ready to withdraw

paths of reasoning when they diverge from the correct path, that is from the

path that would have taken the expert had considering the ignored knowl-

edge portions). In such a way, the nonmonotonic character turns out as a

foundative epistemological feature of the STModel of medical reasoning,

since this nonmonotonic character is the result not of a mere lack of infor-

mation but of a reasoned limiting of information imposed by its own logical

unsoundness.

3.2 Tasks in Medical Reasoning

Following a slightly modi�ed version of the Chandrasekaran's de�nition, each

basic task executed in medical reasoning (i.e diagnosis, therapy planning

and monitoring) requires the combination of an ontology and an inference

model. Diagnosis, therapy planning and monitoring are therefore executed

by an inference model representing an instance of the STModel working

on a speci�c ontology.

3.2.1 Diagnosis

Figure 3 shows the way of specializing STModel for the diagnostic task.

Diagnostic reasoning provides an explanation of the current situation in the

patient. Therefore, it usually represents the �rst task to be executed in

medical reasoning, since therapy planning and monitoring need a previous

understanding of the situation before their execution.

Diagnosis starts from observed data that usually provide incomplete in-

formation about the state of a�airs in the patient. This information is

subsequently mapped into clinical evidences to be explained. Then, abduc-
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Figure 4: Specializing the STModelin therapeutic task.

tion selects plausible diagnostic hypotheses. In diagnostic task, abduction is

said to be unfocused when it takes place in an empty diagnostic space and

evokes categories of hypotheses in order to constrain the range of possible

diagnoses for the case. A focused abduction occurs when hypotheses are

selected in the context de�ned by another diagnostic hypothesis. After ab-

duction has taken place, the set of diagnostic hypotheses (i.e., the diagnostic

space) needs to be organized for planning the next step of reasoning.

Starting from highest ranked diagnostic hypothesis, deduction decides

which �ndings have to be expected if this hypothesis is true (expected data).

Thus, new laboratory or clinical examinations can be requested to verify

unobserved expectations. Finally, induction establishes whether hypotheses

can be concluded or refutated, or whether they are worth testing further,

depending on how closely the observed �ndings match expectations. Fur-

thermore, this inference type deals with the termination of the diagnostic

process: it decides whether a satisfactory explanation of the patient's state

has been achieved.

3.2.2 Therapy Planning

Therapy planning may be represented as shown in Figure 4. As a plan-

ning problem, it may be ragarded the selection of the best set of actions

(i.e. therapies) leading to a future goal (i.e. ameliorate the condition in

the patient). It starts with the diagnosis and the observed data available

on the patient at hand. From these information, a process of abstraction

derives a concise and essential portrait of the situation consisting of a list

of therapeutic problems which may be relevant for the given patient. Such

a task not only involves mapping continuous values of clinical variables into

meaningful categorical propositions, but also, and more important, deriving

a restricted set of critical aspects of the patient's condition which can be

immediately interpreted as a list of crucial targets of the therapy.

The successive abduction takes the list of therapeutic problems and infers

a presumptive list of therapies which includes those treatments that deserve

consideration as potentially useful in handling those problems. Far from be-

ing de�nitive, elements of this list are considered just as hypotheses, needing

further more focused analysis and testing. In fact, reasoning proceeds with
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a ranking phase, which usually establishes priorities over the current list of

treatments. The testing phase involves the deductive-inductive inference.

Deduction here consists in focusing on single treatments of the list, or pairs

of them, in order to perform a more thorough evaluation of their appropri-

ateness for the patient at hand. This usually involves making predictions

in order to estimate possible consequences of the treatments on the clinical

course of the speci�c patient. As stressed above, this requires nonmonotonic

reasoning (i.e. involves the assumption "being all things equal"). New data

usually trigger further cycles, until the list of treatments is reduced to the

point of providing a helpful advice.

3.2.3 Monitoring

Although the word monitoring is often thought to refer to the action of

obtaining data, the proper use of the term in medicine is to observe and to

control the course of a patient's condition. It is essential to answer here the

following question: does monitoring represent a di�erent generic task from

diagnosis and therapy planning? Without taking into consideration very

speci�c situations, diagnosis can be considered as the task of achieving the

best explanation of patient's condition, therapy planning the best action to

perform in order to improve patient's condition, and monitoring the best

strategy to verify if the planned action proves to be really e�ective. To

this aim, a KBS should be able to predict the course of a patient's condition

under the combined action of diagnosed disorders and selected therapy. This

ability should also characterize the action of an expert.

From an epistemological point of view, monitoring may be described by

the STModel. If the selected therapy works and the patient is responding

appropriately, according to the speci�c patient model used, then therapy is

continued or the patient is released from treatment (testing phase). If the

therapy did not work or if unusual �ndings arise, then further assessment

is necessary (selecting phase). As a result of monitoring, previous diagnosis

and therapy planning tend to be either con�rmed or rendered questionable.

In the former case monitoring implies continuous cycling between deduction

and induction, while in the latter case diagnosis and/or therapy planning

may need to be executed again, so requiring abductive inferences starting

from the new patient's condition.
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4 The Computational Level

At the computational level, the major problem of medical reasoning is to

choose methods and formalisms for implementing a given epistemological

model. The aim behind this section is twofold. First, we wish to argue

that the STModel may improve the productivity of KBS development and

knowledge acquisition by making clear which aspect of medical reasoning are

intrinsic to the generic tasks to be executed and which artifacts of the im-

plementation are imposed by chosen methods and knowledge representation

formalisms. As a matter of fact, the STModel permits the knowledge en-

gineer and the expert to cooperatively develop KBS using a shared language

of epistemological entities rather than terms of the underlying implementa-

tion. Second, we argue that "many methods are better than one", that is,

transforming a formalism in a general purpose tool limits the expression of

features and components of the STModel so severely that this tool is no

longer applicable or, at least, desirable.

Here we will brie
y describe basic computational features of the archi-

tectures of some well-known systems in terms of STModel to point out

aspects which seem to be intrinsic to the underlying epistemological model

and not exclusively related to the problem they try to solve.

4.1 Hypothesis Selection

Problem. Which methods are available for generating hypotheses from

observed �ndings or manifestations? Which are their strengths and serious

limitations?

Discussion. Di�erent approaches for generating hypotheses which employ

abduction have been proposed in the literature. We will consider the most

interesting ones from the perspective of available methods for implement-

ing the generating phase of the STModel, that is the ascending pathway

leading from patient's data to the set of abduced hypotheses.

Current research on hypothesis generation emphasizes set covering ap-

proaches [69,70,71]. Although di�erent authors call the hypotheses space

di�erently - "hypotheses graph", "candidate graph", and "hitting set tree"

- their algorithms are categorical and share the same underlying structure.

They are pure syntactic methods generating candidates which form the sub-

set of disorders, each representing a possible explanation for a given set of

manifestations.
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The problem here is to deal with multiple disorders, that is with candi-

date assembly, since �nding all minimal set covers by assembling hypotheses

is NP-hard [72]. An additional problem arises from the fact that the process

of candidate generation sometimes depends on the order in which mani-

festations are entered: some ordering causes an oscillatory phenomenon of

generating and pruning at each frontier and a computational barrier from

one frontier to the next When set covering models are used in domains with

complex ontologies, typically in medicine, di�culties in dealing with multi-

ple disorders suggest to use probabilistic methods to transform categorical

algorithms into heuristic but tractable ones [73,70,74].

In recent years, great e�orts have been devoted to the development of a

probabilistic scheme where the structure of domain knowledge is represented

through a directed graph, such as Bayes Belief Network (BBN) [75].

The key computational feature of BBN is the fact that they allow us to

reduce the computation to a series of local calculations using only variables

obtainable from one entity and its neighbors in a graph structure. Hereby

a calculation of the global joint probability distribution is avoided. When

the network is singly connected (i.e., at most one path between pairs of

nodes is allowed) Kim and Pearl [76] developed an algorithm for propagating

uncertainty in a BBN. Unfortunately, �nding the most probable hypothesis

in BBN has been shown to be intractable in general [77]. Therefore, few

real medical problems can be solved through singly connected BBN, and

multiply connected networks (i.e., more than one path may exist between a

pair of nodes) are required to represent the domain knowledge.

The development of MUNIN [78,79], a KBS for electromyography, re-

quired the construction of networks containing several hundred nodes. Han-

dling such large networks raised new computational problems needing e�-

cient solutions. Shwe and Cooper [80] are presently developing a BBN-based

reformulation of the knowledge base of Quick Medical Reference (QMR) [81],

a KBS for diagnosis in internal medicine that was developed at the Univer-

sity of Pittsburgh as the successor to INTERNIST-1 [4]. To deal with the

representational and computational complexity of QMR-DT, several simpli-

fying assumptions have been made, such as marginal independence of dis-

eases, conditional independence of �ndings given any hypothesis of disease,

and the assumptions that �ndings are manifestations of disease.

The approaches described above share common problems. They do not

allow us to exploit a preliminary data abstraction, and then use a focusing

strategy to reduce the set of hypotheses to be considered. They behave like

novice clinicians that are ine�cient clinical problem solvers even though a

21



simple and clear ontology is available. They try to solve the problem by

evoking all possible disorders and then clustering them.

4.2 Hypothesis Testing

Problem. Is modeling the course of a patient's condition, under the action

of pathogenetic mechanisms and therapies, essential for hypothesis testing?

Discussion. As argued in this paper, hypothesis testing represents an

essential part of medical reasoning and involves deductive-inductive infer-

ences. There are numerous competing modeling approaches that attempt to

express available medical knowledge for predicting what is expected to be

observed in a patient under a hypothesis derived from a previous abductive

inference.

Computational models may be described in terms of expressiveness and

computational tractability. Model expressiveness refers to the breadth of

concepts that can be represented using that formalism. Computational

tractability refers to the ease with which predictions can be derived from

internal model structures. A modeling methodology that is expressively

rich but computationally intractable is not useful in constructing real KBS.

Model expressiveness and computational tractability tend to be opposing

characteristics of a modeling method. Thus, the developer of a KBS must

be able to choose the most suitable method by making a di�cult tradeo�

taking into consideration goal, inference model and ontology of the generic

task he/she wants the KBS to be able to execute.

Modelling world requires to place a special emphasis on the concept

of time. There two opposing perspectives about the nature of time that

philosophers, logicians, and AI researchers have used to justify particular

models of time. One perspective assumes that time is a real entity with ob-

jects and properties that are unique to it. This perspective leads to models

where time itself is the essential element to be characterized and manipu-

lated. The opposite perspective argues that time exists only because the

existence of change; therefore, a model of change is a model of time. This

second approach yields models that express temporal concepts in terms of

processes and the changes these processes cause. Time is an artifact or a

side e�ect rather the primary object. The distinction is important because

the choice of perspective has a major in
uence on the terms, relations, and

operations that are provided within a model representation language.
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Formalisms modeling time as the primitive concept di�er in the unit of

time that is considered to be the basic temporal entity: instantaneous points

or moments [82,83] versus intervals or durations [84,85]. The choice of tem-

poral points or intervals is an ontological question. Few attempts have been

made until now to use in medical KBS an interval-based representation to

construct a model of the key events that occur during a patient's clinical

course [86,87]. Modeling methods based on a representation of change can

be assigned to two di�erent classes: models relating states or events to each

other and models providing predictions of pathophysiological system behav-

ior based on a representation of its structure. Formalisms like associative

causal networks and BBN belong to the �rst class, however their ability to

manage time raised di�cult problems [88]. Models based on quantitative

and qualitative di�erential equations fall in the second class.

The ontological di�erence between the two modelling approaches, that

is, modelling time-intervals versus modelling change, re
ects di�erent goals.

The �rst type of models attempts to capture the temporal relationship be-

tween facts in the world; the others wish to capture the temporal e�ects of

pathophysiological mechanisms or therapeutic actions on the di�erent com-

ponents of a system. In medical reasoning both perspectives make sense.

The patient's medical history consists of facts that change over time as the

patient's illness evolves and responds to administered therapy. This per-

spective �ts well with state- or event-based models. Conversely, disease

manifestations and therapy management are the result of pathophysiologi-

cal, homeostatic, and therapeutic processes operating simultaneously with

synergistic and antagonistic interactions. Reasoning at this level �ts well

with mechanistic models of pathophysiology as interaction of processes. We

believe that there is need for both perspectives and that any KBS that can-

not represent both views of time is likely to be de�cient in its reasoning

capabilities.

For representing and exploiting pathophysiological models in diagnostic

KBS, a qualitative formulation has to be preferred to a quantititive one

because of the reduced number of assumptions in building the model and

because of its ability to reason from pathophysiological principles. Moreover,

traditional quantitative models provide the numeric values that the model

variables will assume over time, and these provide the predicted behavior

of a real system only if model parameters can be accurately estimated from

experimental data. This situation occurs very rarely in medicine.

Several approaches to the formulation and simulation of qualitative mod-

els have been proposed and implemented. QSIM has been the widest ap-
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plied in medical domain, to model physiological systems. QSIM provides

a descriptive language, consisting of qualitative constraints that abstract

the relationships in a di�erential equation, to represent the structure of a

pathophysiological system and a simulation algorithm to infer its qualitative

behaviour. Qualitative predictions are obtained from the model by perturb-

ing the normal state according to the hypothesized pathogenetic action of

the disease. Fault models corresponding to multiple diagnostic hypotheses

are easy to build since it is possible to submit a model to any number of

perturbations. When a disease is hypothesized, one or several fault models

are taken into consideration: each model provides an aetiological theory of

the observed patient's state. The perturbations to the normal state de�ne

the initial state of the simulation.

Therapy planning often involves complex, con
icting objectives. For any

decision involving con
icting objectives, the optimal decision represents a

tradeo� among the competing goals. A KBS, if it has to make recommenda-

tions for actions, must be able to access and compare the costs and bene�t

of the possible e�ects of a therapy by taking into consideration uncertainty

about the patient's course given that therapy and utilities associated to the

therapy itself and its possible consequences. Decision theoretic models [89]

seem appropriate in these cases. Their advantages are that patient utilities,

incorporating preferences and risk attitudes, are modeled explicitly, and

that probabilistic representation of uncertainty is axiomatic and provides

the range of quanti�cation necessary to represent the small but important

di�erences in likelihood of the di�erent e�ects of administered therapy.

4.3 Many Methods are Better than One

Problem. Is there a unique method able to meet all requirements, both

representational and computational, needed to develop a KBS?

Discussion. Computational issues discussed in previous sections support

the argument that there is not a unique knowledge formalism which allows us

to implement a KBS able to develop medical reasoning as well as has been

described at the epistemological level. A very promising approach based

on frame-like languages has been proved to be too weak both in expressiv-

ity and in computational tractability. The failure of the recent attempt to

represent ABEL's causal ontology using these languages [90] proved their ex-

pressivity limits. Furthermore, other experiments using the same languages

showed that, in most critical applications, they produce constructs requiring
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Figure 5: The blackboard architecture of NEOANEMIA.

non-polynomial (or otherwise unacceptably long) worst-case response times

for sound and complete classi�cation of concepts in taxonomic hierarchies.

Levesque and Brachman [91] suggest to omit these constructs. However,

Doyle and Patil [64] convincingly demonstrated that these restrictions de-

stroy the generality of the language. De�nitions inexpressible because of

language restrictions must be entered as primitive concepts, which are un-

classi�able, and thus reduce the utility of classi�cation. Moreover, restrict-

ing classi�cation to purely de�nitional information signi�cantly reduces its

utility in domain applications. STModel allows us to claim that the solu-

tion for this problem stays beyond formalisms and it must be sought in the

epistemological level.

Ontological and computational issues force us to combine di�erent for-

malisms and methods in KBS implementation. Namely, the main com-

putational problem seems to be the way these di�erent methods can be

combined to deal with di�erent ontological features and di�erent phases of

reasoning. The aim, here, should be the development of tools allowing the

implementation of an architecture embedding di�erent knowledge represen-

tation formalisms and a separate control module, able to choose dynamically

among those formalisms according to the ontology of the domain, the phase

of reasoning to be performed, and the available computational resources.

The blackboard control architecture provides a suitable framework for

building KBS ful�lling the requirements mentioned above [92]. It extends

and elaborates the standard blackboard architecture [93] in order to ap-

proach the problem of controlling the KBS's problem solving process as a

real-time planning problem.

Brie
y, the blackboard control architecture extends and elaborates the

architectural features summarized above as follows. It de�nes explicit do-

main and control blackboards. Moreover, it de�nes explicit domain and con-

trol knowledge sources which operate primarily on the domain and control

blackboard, respectively. This allows us to represent explicitly and sepa-

rately the inference model (i.e. control knowledge) and the ontology (i.e.

domain knowledge) and to choose the most suited representation formalism

for each knowledge source.

Figure 5 shows the architecture of NEOANEMIA [54], a KBS able to

recognize disorders causing anemia. It derives from a previous KBS called
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ANEMIA [94] which was proved to perform quite satisfactorily [95]. The

control blackboard contains information about which strategies have been

applied to obtain the present solution of the diagnostic problem thus allowing

the system to be aware of the problem solving strategy it is exploiting and to

switch to another one if the previous one did not prove to be e�ective, while

the domain blackboard contains the solution elements organized at di�erent

level of abstraction. According to the epistemological model of the diagnos-

tic task, NEOANEMIA starts selecting, via unfocused abduction, general

diagnostic categories from clinical evidences obtained through an abstrac-

tion of routine hematologic �ndings. All NEOANEMIA's entities, i.e. pa-

tient's data and diagnostic entities, are organized into taxonomic structures.

The system proceeds by exploring (unfocused abduction) and possibly re�n-

ing among the previously abduced hypotheses (focused abduction). During

its abductive inference, NEOANEMIA exploits a knowledge base built up

using production rules and generates a diagnostic space containing all the

abduced diagnostic hypotheses. Then, diagnostic space structuring takes

place: NEOANEMIA mainly looks for compatibilities or possible associa-

tions, thus grouping or di�erentiating among the diseases included in the

diagnostic space. In such a way, composite hypotheses can be assembled.

Once abduction and diagnostic space structuring have been executed,

NEOANEMIA will deduce expected manifestations from the hypotheses in-

cluded into the diagnostic space. While in the hypothesis generation phase,

NEOANEMIA exploits compiled heuristic pathways speci�ed by the expert,

a separate and explicit representation of taxonomic and causal ontology is

used in the testing phase. They have been represented using respectively

a simple two layer network (i.e. representing which clinical evidences may

be expected in presence of each disease) and QSIM [50] for representing

available knowledge on pathophysiological system dynamics. QSIM requires

that the basic aetiological mechanisms of a disease are represented as per-

turbations of the initial conditions of a qualitative model of iron metabolism

and expected manifestations are then found by analysing the new reached

steady state conditions. QSIM models provide a deeper understanding of

portions of knowledge expressed by the two level network. They also predict

the e�ect of multiple diseases acting together.

The inductive phase is then carried out by comparing expected with

observed �ndings, when available, or by planning what to do next. Further

actions aim either to corroborate candidate hypotheses or to discriminate

between competing hypotheses, or to rule-out hypotheses. The selected

action depends on the contents of the structured diagnostic space and the
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strategy to make the decision is represented in the control knowledge by

meta-rules. In order to represent explicitly the taxonomic ontology exploited

in the deductive phase, we are enhancing the frame-based language we used

with an ATMS [96], allowing us to handle the nonmonotonic character of

the deductive phase: the hypothesis hierarchy is mapped into a hierarchy

of environments each representing di�erent possible states of the patient as

suggested by abduced hypotheses.

Computational problems arising in the implementation of the epistemo-

logical model of therapy planning are presently under careful consideration.

To this aim a KBS called Therapy Advisor (TA) has been developed [97].

The task of TA is planning an adequate therapy depending on the etiopatho-

logic mechanisms causing a patient's anemia as diagnosed by NEOANEMIA.

According to the epistemological model of the therapy planning task, TA

starts from deriving a restricted set of critical aspects of a patient's condition

which might be eliminated adopting a suitable therapy. These represent

abstractions which have been cathegorically derived from patient's data and

formulated diagnosis in order to abduce a set of therapies potentially useful

to handle those problems. For most of them a well agreed-on therapeutic

plan can be proposed. In such cases, therapy planning does not involve

basic strategic choices, but rather consists in �xing details such as dosage

and route of administration in order to meet patient's conditions. Thus,

production rules have been judged as the most appropriate formalism for

representing knowledge. The remaining therapeutic problems involve trade-

o�s between con
icting goals, in presence of uncertainty about the therapy

e�ects.

In presence of uncertainty and trade-o�, our conclusion about the rec-

ommended therapeutic action may depend on a large number of patient's

data. They are usually called "defeaters". For example, the decision to re-

move the spleen (splenectomy) in a myelo�brotic patient in order to reduce

his/her transfusional need interacts with the "platelet count", since in pres-

ence of a high platelet count there is a signi�cant risk of splenectomy-induced

thrombosis.

The presence of several defeaters would burden the rules with a large

number of possible exceptions whose pathophysiological meaning would be

di�cult to be understood by a non-expert user. Moreover, it is essential for

building an advanced TA to represent explicitly and separately the medi-

cal knowledge the system uses to predict the e�ects of a therapy, possibly

through a model of the underlying pathophysiological system, and the pref-

erences, elicited from either the user or the patient.
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These reasons led to the choice of adopting "in
uence diagrams" (IDs)

for representing the most challenging therapeutic decision problems. IDs are

directed acyclic graphs with three types of nodes: decision, chance, and util-

ity nodes. Decision nodes represent choices available to the decision-maker.

Chance nodes represent uncertain quantities, that may either characterize

the patient's condition at the decision time or therapy outcomes. Finally,

the utility node embeds the utilities assigned to possible con�gurations of

values of chance nodes.

TA's knowledge base contains some taxonomies of entities represented

by means of frames: patient's �ndings and diagnostic entities are shared

with NEOANEMIA, while therapeutic problems and adoptable therapies

are speci�c portions of knowledge for therapy planning. Starting from ob-

served patient's data and diagnosis formulated by NEOANEMIA, TA selects

the relevant therapeutic problems in the patient at hand. To this aim TA

exploits di�erent kinds of pathophysiological concepts: some of these are

abstracted by NEOANEMIA from patient's data (for example, "severe ane-

mia", "augmented serum bilirubin", etc.), some others represent general

categories of diseases included by NEOANEMIA into its diagnostic space

(for example, "aregenerative anemias", "hemolytic anemias", etc.) able to

de�ne in a synthetic way the behavior of the erythropoietic system, while

the remaining concepts are abstracted by TA from patient's data and are

needed for selecting the most suitable therapy.

Two fundamental design choices have been made from the computational

point of view. First, TA was built exploiting the blackboard control archi-

tecture framework, as well as we did developing NEOANEMIA. Second,

IDs have been used for representing a set of signi�cant therapeutic decision

problems. This limited the size of each ID, so avoiding the need to tackle

any problem of e�ciency in managing uncertainty on a large BBN. Onthe

other hand, TA was designed so that it can provide support to retrieve the

ID that is appropriate to the particular decision at hand.

Investigating architectural foundations for real-time performance in in-

telligent agents, Hayes-Roth [98] proposed an architecture for these agents

comprising subsystems for perception, cognition and action. Focusing our

attention only on the cognition subsystem, we can say that it holds all of an

agent's knowledge and performs all of its reasoning. It asynchronously ac-

quires perceived information, retrieved from its input bu�ers, and performs

a variety of knowledge-based reasoning steps, among which the following are

interesting for us: detection and interpretation of events (diagnosis), plan-

ning long-term courses of action (therapy planning), and adaptation of its
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behavior to changing environmental conditions (monitoring).

GUARDIAN [99], developed on top of BB1, performs all of these three

generic tasks. For some of these tasks, it uses both compiled and explicit on-

tology and inference model. The compiled pathways permit quick responses

to familiar situations. The explicit ontology embeds more fundamental

biomedical knowledge and permits more thorough (and time-consuming)

responses to both familiar and unfamiliar cases. Compiled and explicit

knowledge are implemented as sets of abstract reasoning operations that

are triggered by particular kinds of perceptual or cognitive events, along

with control operations that construct resource-bounded control plans in

particular context.

5 Conclusions

This paper presents a new abstraction paradigm aiming at unifying di�er-

ent ideas that have been recently proposed for the analysis and design of

KBS. These ideas all attempt to provide descriptions of KBS reasoning for

solving a particular kind of problems at a conceptual level that is above

the implementation, thus making clear which aspects of a class of problems

are intrinsic to the problem and which are artifacts of the implementation.

Four fundamental ideas have been carefully considered: inference structures,

deep/shallow system, problem solving method, and generic tasks. Each of

these ideas focuses on a particular feature of reasoning: the pattern of in-

ferences, the domain models underlying expertise, the sequence of actions

needed to solve a problem, and the task features. Our proposal is based on

a two levels analysis of KBS: an epistemological and a computational level.

At the �rst level, ontology and inference model of a KBS have to be de-

�ned. Ontology represent the conceptual model of entities and relationships

composing the domain knowledge, while the inference model is the concep-

tual representation of the inference structure to execute a task by managing

that ontology. At the computational level, methods and formalisms selected

to build and exploit a knowledge base fall. We outlined the fact that di�erent

disciplines (i.e., AI, logic, probability theory, decision theory, mathematics,

etc.) can provide suitable formalisms and methods. They should be adopted

after the epistemological analysis has been carried out and taking into ac-

count the constraints which derive from the size and the type of available

domain knowledge and from the environment where the KBS should operate

(i.e., small time intervals allowed to make decisions and limited computer
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resources).

We constrained our study to medicine and identi�ed three generic tasks:

diagnosis, therapy planning and monitoring. They are obviously interre-

lated but can be submitted to a separate epistemological analysis. The

main result of this analysis was that these generic tasks manage di�erent

ontologies, but they can be executed exploiting a unique inference model.

Such a model involves three di�erent inference types: abduction, deduction,

and induction. Thus, medical reasoning may be broken down into two di�er-

ent phases: �rst, initial information is used to generate (abduce) plausible

hypotheses (hypothesis selection phase), then these hypotheses are used as

starting conditions to forecast (deduce) expected consequences, then these

expected consequences are matched with the state of a�airs in the patient

in order to con�rm or falsify (induction) those hypotheses which they come

from (hypothesis testing phase).
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