FAIRCHILD

SEMICONDUCTOR

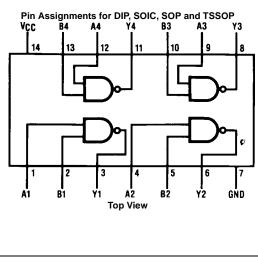
MM74HCT00 Quad 2 Input NAND Gate

General Description

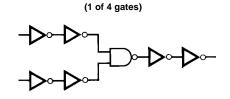
The MM74HCT00 is a NAND gates fabricated using advanced silicon-gate CMOS technology which provides the inherent benefits of CMOS—low quiescent power and wide power supply range. This device is input and output characteristic and pin-out compatible with standard 74LS logic families. All inputs are protected from static discharge damage by internal diodes to V_{CC} and ground.

MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

Features


- TTL, LS pin-out and threshold compatible
- Fast switching: t_{PLH}, t_{PHL}=14 ns (typ)
- Low power: 10 µW at DC
- High fan out, 10 LS-TTL loads

Ordering Code:


Order Number	Package	Package Description			
Order Number	Number	Package Description			
MM74HCT00M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow			
MM74HCT00MX_NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow			
MM74HCT00SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
MM74HCT00MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
MM74HCT00MTCX_NL	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
MM74HCT00N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
MM74HCT00N_NL	N14A	Pb-Free 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					

Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Logic Diagram

© 2005 Fairchild Semiconductor Corporation DS005356

Absolute Maximum Ratings(Note 1) (Note 2)

`	,	
	Supply Voltage (V _{CC})	-0.5 to +7.0V
	DC Input Voltage (V _{IN})	-1.5 to $V_{CC}\mbox{+}1.5\mbox{V}$
	DC Output Voltage (V _{OUT})	–0.5 to $V_{CC}\mbox{+}0.5\mbox{V}$
	Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
	DC Output Current, per pin (I _{OUT})	±25 mA
	DC V_{CC} or GND Current, per pin (I_{CC})	±50 mA
	Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
	Power Dissipation (P _D)	
	(Note 3)	600 mW
	S.O. Package only	500 mW
	Lead Temperature (TL)	
	(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
DC Input or Output Voltage	0	V_{CC}	V
(V _{IN} , V _{OUT})			
Operating Temperature Range (T_A)	-40	+85	°C
Input Rise or Fall Times			
(t _r , t _f)		500	ns
Note 1: Absolute Maximum Ratings are those age to the device may occur.	e values	beyond wł	nich dam-

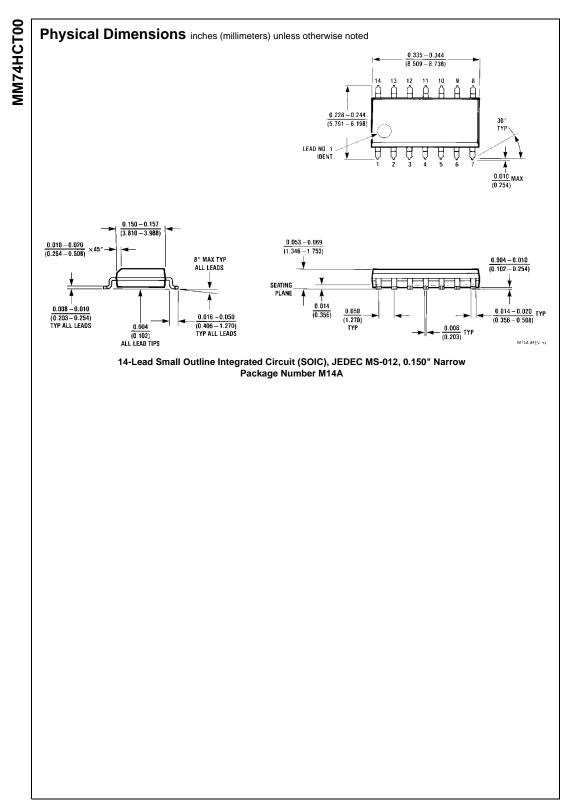
Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

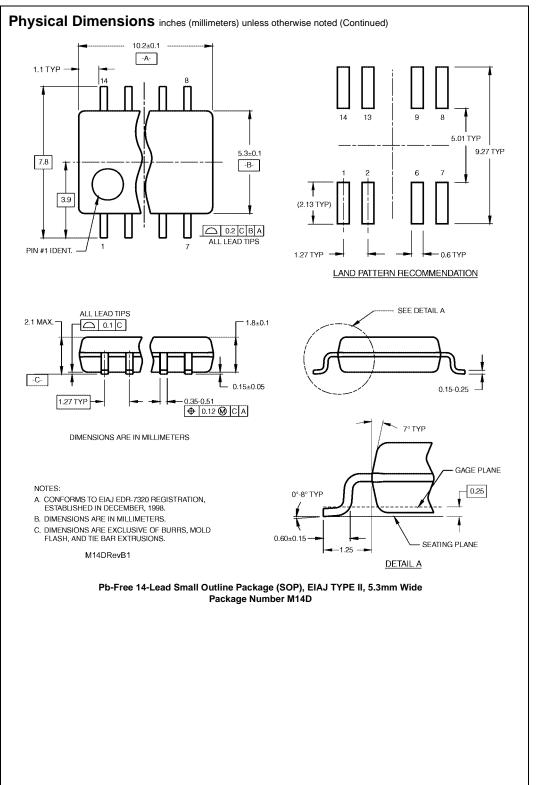
DC Electrical Characteristics

V_{CC} = 5V \pm 10% (unless otherwise specified)

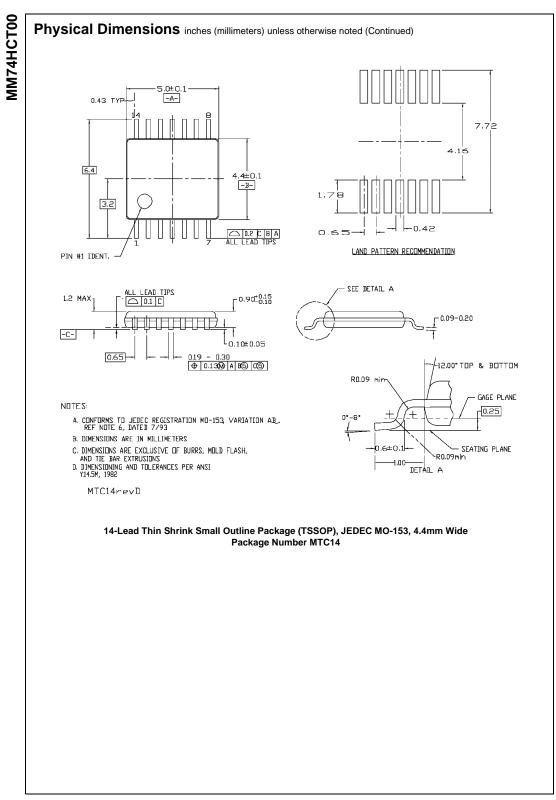
Symbol	Parameter	Conditions	T _A = 25°C		$T_{A} = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Gynibol		Conditions	Тур		Guaranteed Limits		Units
V _{IH}	Minimum HIGH Level			2.0	2.0	2.0	V
	Input Voltage						
V _{IL}	Maximum LOW Level			0.8	0.8	0.8	V
	Input Voltage						
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}					
	Output Voltage	$ I_{OUT} = 20 \ \mu A$	V _{CC}	V _{CC} -0.1	V _{CC} -0.1	V _{CC} -0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	3.7	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	5.2	4.98	4.84	4.7	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$					
	Voltage	$ I_{OUT} = 20 \ \mu A$	0	0.1	0.1	0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	0.4	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND,		±0.05	±0.5	±1.0	μA
	Current	V _{IH} or V _{IL}					
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND,		1.0	10	40	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$					
		V _{IN} = 2.4V or 0.5V (Note 4)	0.18	0.3	0.4	0.5	mA

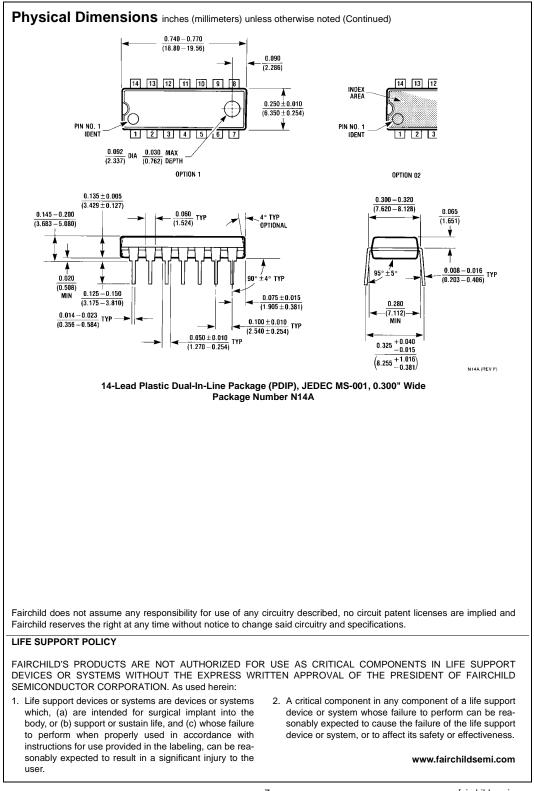
Note 4: This is measured per input with all other inputs held at V_{CC} or ground.


	ctrical Characteristics $r_r = t_r = 6 \text{ ns}, C_L = 15 \text{ pF}, T_A = 25^{\circ}C (u)$				
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
PLH, ^t PHL	Maximum Propagation Delay		14	18	ns


AC Electrical Characteristics

 V_{CC} = 5.0V $\pm 10\%,\,t_r$ = t_f = 6 ns, C_L = 50 pF (unless otherwise noted)


Symbol	Parameter	Conditions	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$	$T_A=-55 \ to \ 125^\circ C$	Units
Gymbol	rarameter		Тур		Guaranteed L	imits	Units
t _{PLH} , t _{PHL}	Maximum Propagation Delay		18	23	29	35	ns
t _{THL} , t _{TLH}	Maximum Output Rise & Fall Time		8	15	19	22	ns
C _{PD}	Power Dissipation Capacitance	(Note 5)	30				pF
CIN	Input Capacitance		5	10	10	10	pF


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

MM74HCT00

MM74HCT00 Quad 2 Input NAND Gate