October 1987 Revised January 1999

CD4070BC Quad 2-Input EXCLUSIVE-OR Gate

General Description

FAIRCHILD

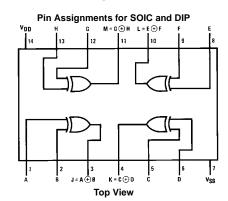
SEMICONDUCTOR

The CD4070BC employs complementary MOS (CMOS) transistors to achieve wide power supply operating range, low power consumption, and high noise margin, the CD4070BC provide basic functions used in the implementation of digital integrated circuit systems. The N- and P-channel enhancement mode transistors provide a symmetrical circuit with output swing essentially equal to the supply voltage. No DC power other than that caused by leakage current is consumed during static condition. All inputs are

protected from damage due to static discharge by diode clamps to V_{DD} and $V_{\text{SS}}.$

Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} typ.
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- Pin compatible to CD4030A Equivalent to MM74C86 and MC14070B


CD4070BC Quad 2-Input EXCLUSIVE-OR Gate

Ordering Code:

Order Number	Package Number	Package Description
CD4070BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Body
CD4070BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Truth Table

Inp	Inputs Output A B Y	
Α		
L	L	L
L	н	н
н	L	н
Н	Н	L

© 1999 Fairchild Semiconductor Corporation DS005976.prf

www.fairchildsemi.com

CD4070BC

Absolute Maximum Ratings(Note 1) (Note 2)

()	
DC Supply Voltage (V _{DD})	-0.5 to +18 V _{DC}
Input Voltage (V _{IN})	–0.5 to V_DD +0.5 V_DC
Storage Temperature Range (T_S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 2)

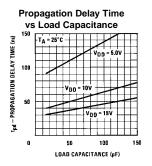
DC Supply Voltage (V _{DD})	3V to 15 V_{DC}
Input Voltage (V _{IN})	0 to $V_{DD} V_{DC}$
Operating Temperature Range (T _A)	-40°C to +85°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

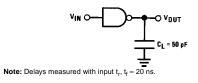
Note 2: $V_{SS} = 0V$ unless otherwise specified.

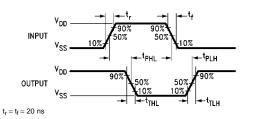
DC Electrical Characteristics (Note 3)

Symbol	Devemetry	Conditions	-40	−40°C		+25°C			+85°C	
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V,$		1.0			1.0		7.5	μΑ
	Current	$V_{IN} = V_{DD} \text{ or } V_{SS}$								
		$V_{DD} = 10V$,		2.0			2.0		15	μΑ
		$V_{IN} = V_{DD}$ or V_{SS}								
		V _{DD} = 15V,		4.0			4.0		30	μA
		$V_{IN} = V_{DD}$ or V_{SS}								
V _{OL}	LOW Level	I _O < 1 μA								
	Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	V
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	V
V _{OH}	HIGH Level	I _O < 1 μA								
	Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		V
VIL	LOW Level	I _O < 1 μA								
	Input Voltage	$V_{DD} = 5V$, $V_O = 4.5V$ or $0.5V$		1.5			1.5		1.5	V
		$V_{DD} = 10V, V_O = 9V \text{ or } 1.0V$		3.0			3.0		3.0	V
		$V_{DD} = 15V$, $V_O = 13.5V$ or 1.5V		4.0			4.0		4.0	V
VIH	HIGH Level	I _O < 1 μA								
	Input Voltage	$V_{DD} = 5V, V_O = 0.5V \text{ or } 4.5V$	3.5		3.5			3.5		V
		$V_{DD} = 10V$, $V_{O} = 1V$ or 9.0V	7.0		7.0			7.0		V
		$V_{DD} = 15V$, $V_O = 1.5V$ or $13.5V$	11.0		11.0			11.0		V
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	Current	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_O = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{ОН}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	Current	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_O = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.3		-10 ⁻⁵	-0.3		-1.0	μA
		$V_{DD} = 15V, V_{IN} = 15V$		0.3		10 ⁻⁵	0.3		1.0	μΑ

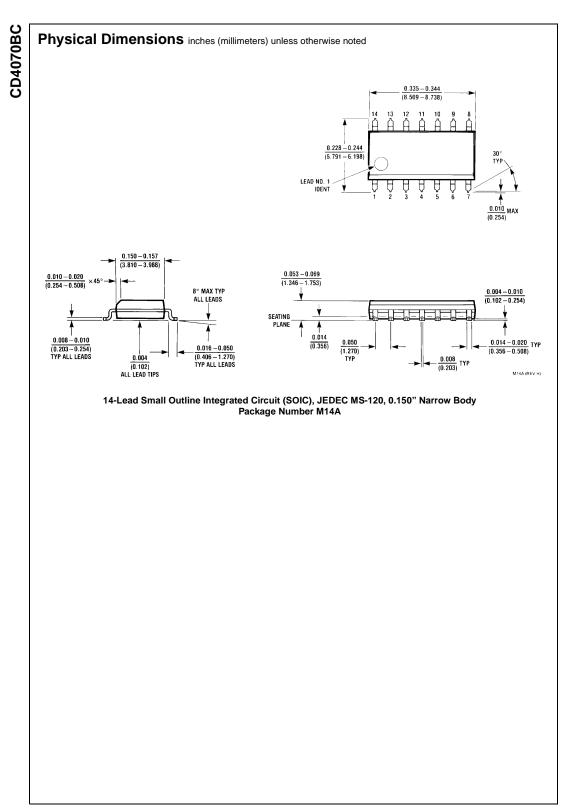

Note 3: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

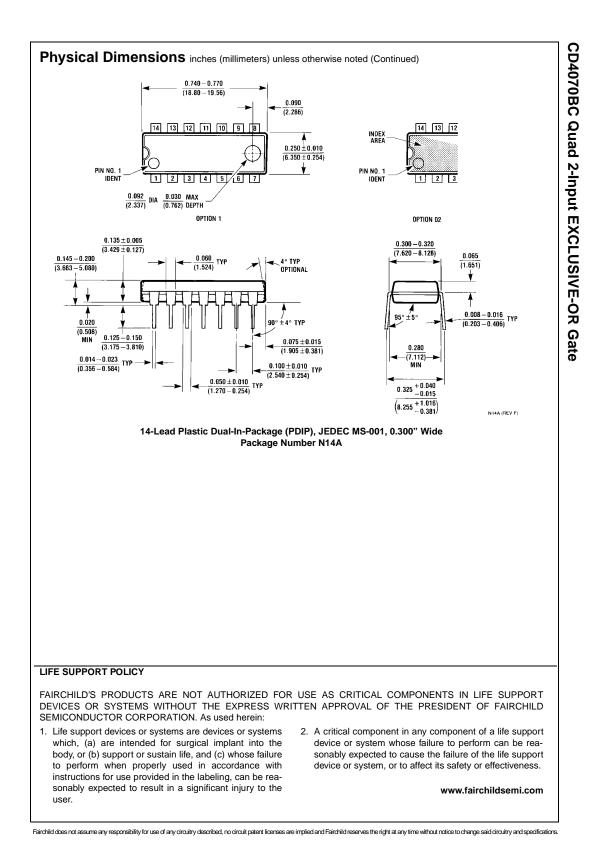
	The second se	ess otherwise specified				
Symbol	Parameter	Conditions	Min	Тур	Мах	Units
t _{PHL} or	Propagation Delay Time	$V_{DD} = 5V$		110	185	ns
t _{PLH}	from Input to Output	$V_{DD} = 10V$		50	90	ns
		$V_{DD} = 15V$		40	75	ns
t _{THL} or	Transition Time	$V_{DD} = 5V$		100	200	ns
t _{TLH}		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	100 80	ns
CIN	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacitance	Any Input (Note 5)		20		pF


Note 4: AC Parameters are guaranteed by DC correlated testing.


Note 5: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see 74C Family Characteristics Application Note—AN-90.

Typical PerformanceCharacteristics


AC Test Circuit and Switching Time Waveforms



CD4070BC

www.fairchildsemi.com

www.fairchildsemi.com

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.