PHYSICAL SENSORS FOR Environmental Signals

Irene Nutini

Master Degree in Artificial Intelligence for Science and Technology (AI4ST)

A.y. 2023-2024

OUTLINE OF THE COURSE

- Lecture 1: Introduction to environmental signals and physical sensors
- Lab 1: Introduction to instruments for measurements
- Lecture 2: Vibrations: sources and detection
- Lab 2: Characterisation of an acoustic system
- Lecture 3: Distance, position and speed measurement
- Lab 3: Measuring distance with ultrasounds and speed with an accelerometer
- Lecture 4: Electromagnetic radiation: sources and detection
- Lab 4: Detecting and generating light

SENSING THE ENVIRONMENT

EXAMPLE: ULTRASOUND DETECTOR/ACCELEROMETER READOUT CHAIN

- Source: element in space (static / in motion)
- Sensor: ultrasounds detector / accelerometer
- Read the signal output: Arduino digitiser

ARDUINO

Arduino is an opensource electronics prototyping platform based on flexible, easyto-use hardware and software. It'svintended for artists, designers, hobbyists, and anyone interested in creating interactive objects or environments. *From Arduino.cc*

Main components

- Microcontroller
- Analogic and digital I/O pins
- Flash memory
- USB port for serial communication

What Arduino can do:

- Read sensors
- Control peripheral devices
- Communicate via serial port
- Remotely programmable

ARDUINO

The **Arduino Uno** is a microcontroller board based on the **ATmega328P**. It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP header and a reset button.

The **Arduino Mega 2560** is a microcontroller board based on the **ATmega2560**. It has 54 digital input/ output pins (of which 15 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button.

ARDUINO

Components:

- Microcontroller
- Pins I/O
- Power: power jack, voltage regulator
- ICSP and clock
- USB port

- Arduino is a programmable device
- Dedicated software development environment (Arduino IDE)
 Programming language
- similar to C/C++
- Dedicated libraries for handling input/output

Arrays

Arduino	Processing
int bar[8]; bar[0] = 1;	int[] bar = new int[8]; bar[0] = 1;
int foo[] = { 0, 1, 2 };	<pre>int foo[] = { 0, 1, 2 }; or int[] foo = { 0, 1, 2 };</pre>
Loops	
Arduino	Processing
int i; for (i = 0; i < 5; i++) { }	for (int i = 0; i < 5; i++) { }

Printing

Arduino	Processing
Serial.println("hello world");	println("hello world");
int i = 5; Serial.println(i);	int i = 5; println(i);
<pre>int i = 5; Serial.print("i = "); Serial.print(i); Serial.println();</pre>	<pre>int i = 5; println("i = " + i);</pre>

Dedicated software development environment (Arduino IDE)

- Compile/Verify
 Upload/Run
- 3. Status

	-	Blink Arduino IDE 2.2.2-nightly-20231130		
	€ 🤄	🖞 Arduino Mega or Meg 🔻	≁	۰Q
\leq	Blink.ino			
	16	by Arturo Guadalupi		
	17	modified 8 Sep 2016		
1_)	18	by Colby Newman		
	19	This example cade is in the public densin		
n lk	20	This example code is in the public domain.		
	21	https://www.arduino.cc/en/Tutorial/BuiltInExamples/Blink		
	23	*/		
	24			
~	25	// the setup function runs once when you press reset or power the board		
\sim	26	<pre>void setup() {</pre>		
Q	27	<pre>// initialize digital pin LED_BUILTIN as an output.</pre>		
	28	<pre>pinMode(LED_BUILTIN, OUTPUT);</pre>		
	29	}		
	30			
	31	// the loop function runs over and over again forever		
	32	Vold Loop() {		
	33	digitatwrite(LED_BOILTIN, HIGH); // turn the LED on (HIGH is the voltage level)		
	35	digitalWrite(LED_BUILITIN, LOW): // turn the LED off by making the voltage LOW		
	36	delay(1000): // wait for a second		
	37	}		
	38			
-	Output		=	= _
r	output		_	× L
	Sketch	uses 1536 bytes (0%) of program storage space. Maximum is 253952 bytes.		. 01
	Global	variables use 9 bytes (0%) of bynamic memory, leaving 8183 bytes for local variables. Maxim	um 1	5 61
8				

Dedicated software development environment (Arduino IDE)

Main functions:

setup(): called once when the program starts. Initialization of variables and pins status *loop()*: loop inside which the code has to be implemented

Presence of dedicated libraries for accessing the pins and set/read their status

24	
25	<pre>// the setup function runs once when you press reset or power the board</pre>
26	<pre>void setup() {</pre>
27	<pre>// initialize digital pin LED_BUILTIN as an output.</pre>
28	<pre>pinMode(LED_BUILTIN, OUTPUT);</pre>
29	}
30	
31	<pre>// the loop function runs over and over again forever</pre>
32	<pre>void loop() {</pre>
33	<pre>digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)</pre>
34	delay(1000); // wait for a second
35	<pre>digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW</pre>
36	delay(1000); // wait for a second
37	}
38	

Dedicated software development environment (Arduino IDE)

Install and test:

1. Download the software from: <u>http://</u> arduino.cc/en/Main/Software

- 2. Connect the board to the PC via USB
- 3. Launch ArduinoIDE
- 4. Open the Basics Example: 'Blink.ino'
- 5. Select the Arduino board type
- 6. Verify and upload the program.

If the setup worked, after few s from the upload, the orange LED should start blinking

•	•	Blink Arduino IDE 2.2.2-nightly-20231130		
	€ 🕞	ᢤ Arduino Mega or Meg ▼	∿ .©	
_	Blink.ino			
_	16	by Arturo Guadalupi		
	17	modified 8 Sep 2016		
_)	18	by Colby Newman		
	19			
1 .	20	This example code is in the public domain.		
W	21			
	22	https://www.arduino.cc/en/lutorial/BuiltInExamples/Blink		
	23	*/		
<u>k</u> -	24	// the setup function runs once when you press reset or nower the board		
	26	void setup() {		
2	27	// initialize digital pin LED BUILTIN as an output.		
	28	pinMode(LED BUILTIN, OUTPUT);		
	29	}		
	30			
	31	<pre>// the loop function runs over and over again forever</pre>		
	32	void loop() {		
	33	<pre>digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)</pre>		
	34	delay(1000); // wait for a second		
	35	digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW		
	30	detay(1000); // wait for a second		
	38	ſ		
	0.11			
	Output			1
	Sketch	uses 1536 bytes (0%) of program storage space. Maximum is 253952 bytes.		
	Global	variables use 9 bytes (0%) of dynamic memory, leaving 8183 bytes for local variables. Maximu	um is 81	92
8)				
		Lin 1, Col 1 Arduino Mega or Mega 2560 on /dev/cu ushmodem14101	(? 2 E	

ARDUINO: WARNINGS

10 ways to destroy Arduino (beware!):

- 1. Set I/O pins to ground
- 2. Connect I/O pins together
- 3. Apply too much voltage on I/O pins
- 4. Apply voltage on Vin with inverted polarity
- 5. Apply > 5V on the '5V' pin
- 6. Apply > 3.3V on the '3.3V' pin
- 7. Set Vin to ground
- 8. Apply >13V to the reset
- 9. Apply voltage to the '5V' pin and charge Vin
- 10. Exceed the max current for the microcontroller (200mA)

ARDUINO: YOUR FIRST TEST

Playing with the blinking LED Start with the Basics Example: 'Blink.ino'

Modify the program to:

- 1. Change the blinking frequency
- 2. Add other LEDs on digital pins
- 3. Turn on multiple LEDs sequentially
- 4. Change the LED brightness

EXAMPLE: ULTRASOUND DETECTOR/ACCELEROMETER READOUT CHAIN

- Source: element in space (static / in motion)
- Sensor: ultrasounds detector / accelerometer
- Read the signal output: Arduino digitiser

ULTRASOUND DETECTOR

- Source: element in space (static/dynamic)
- Sensor: ultrasounds detector
- Read the signal output: Arduino digitiser to serial port

Reference example: <u>https://win.adrirobot.it/sonar/HC-SR04/Sensore_sonar_HC-SR04.htm</u> Other examples: <u>https://docs.arduino.cc/built-in-examples/sensors/Ping</u>

ULTRASOUND DETECTOR

- Source: element in space (static/dynamic)
- Sensor: ultrasounds detector
- Read the signal output: Arduino digitiser to serial port

Ultrasound sensor (HC-SR04) to Arduino

- Vcc to pin 5V
- Trig to pin12
- Echo to pin 23
- Gnd to pin Gnd

ULTRASOUND DETECTOR

 Reading the Signal output with Arduino

.

- Onde_sonore.ino #define TRIG 12 1 #define ECHO 13 2 3 4 #include <Ultrasonic.h> 5 6 Ultrasonic ultrasonic(12, 13); //(trig, echo) void setup() { 8 9 Serial.begin(9600); 10 11 12 } 13 void loop() { 14 15 16 Serial.print("New Measurement. \n"); 17 18 int i =0; Serial.print("Time[ms] and Distance[cm]: \n"); 19 20 while(i< 20){ Serial.println(String(micros()*1e-3) + String('\t') + ultrasonic.read()); 21 //Serial.println(micros()*1e-3); 22 23 delay(1000); 24 i++; 25 } 26 27 exit(0); 28 29 } 30 Output Serial Monitor × ⊘ ≣∞ \geq No Line Ending - 9600 baud Message (Enter to send message to 'Arduino Uno' on '/dev/cu.usbmodem14101') New Measurement. Time[ms] and Distance[cm]: 18.67 293 1037.70 293 2056.76 293 3075.84 293 4094.94 293 5114.03 293 6133.08 293 Ln 2, Col 16 Arduino Uno on /dev/cu.usbmodem14101 🗘 3 🗖
- <u>https://github.com/ErickSimoes/</u>
 <u>Ultrasonic/tree/master/src</u>

ULTRASOUND DETECTOR: MEAS (1)

Position a static object in front of the sensor (theta=0)

- Goal: Check the range capabilities of the ussensor, varying the object distance d.
 Compare reconstructed d (us-sensor) vs measured d (tape)
- Goal: for a fixed d, check the capabilities of the sensor to reconstruct the distance for different size/shape of the object

ULTRASOUND DETECTOR: MEAS (2)

Position a static object at a given distance and angle from the sensor (r, theta)

- Goal: Check the capabilities to measure r vs theta. Compare reconstructed r (ussensor) vs measured r (tape) at different angles
- Goal: Check the effect of possible interfering objects in the quality of the measurement

Practical test of performance,

Best in 30 degree angle

ULTRASOUND DETECTOR: MEAS (3)

Position an object at a given distance d in front of the sensor and, while starting the digitization, move it along the vertical direction on the plane

- Goal: Plot distance vs time from the us-sensor. Check the capabilities to reconstruct the average speed
- Goal(+): free fall (from height h (tight the object with a wire) to ground (where the us-sensor is positioned)

