

Laboratorio di Elettronica II

Relazione su Progetto, Simulazioni e Misure di un Amplificatore con BJT

Nome1, Cognome1, matricola1

Nome2, Cognome2, matricola2

Sommario

Schema circuitale e analisi del circuito

Simulazioni

Montaggio e Misure

Schema circuitale

Riportare uno schema circuitale ordinato e ben leggibile dell'amplificatore.

Nominare i componenti e riportare il valore/sigla dei componenti usati nel montaggio finale

Calcolo del punto di lavoro dei BJT

Riportare (una slide per ogni BJT) le equazioni per determinare il punto di lavoro (tensione V_{CE} e corrente I_C) per ciascun BJT

Calcolo del punto di lavoro dei BJT

Concludere i calcoli del punto di lavoro con una tabella riassuntiva:

Q1	VCE=	IC=
Q2	VCE=	IC=
Q3	VCE=	IC=

Guadagno a piccolo segnale in centro banda

Riportare (in una o più slides) le equazioni utilizzate per calcolare il guadagno di tensione a centro banda (aggiungere anche lo schema equivalente al piccolo segnale)

Calcolare il guadagno a centro banda considerando i valori dei componenti utilizzati nel montaggio

Calcolo della banda passante

Riportare (in una o più slides) le equazioni utilizzate per calcolare la frequenza di taglio inferiore e superiore.

Calcolare le due frequenze, considerando il valore dei componenti utilizzati nel montaggio

Guadagno e Banda Passante Attesi

Concludere i calcoli di banda e guadagno con una tabella riassuntiva

Guadagno a centro banda	Av=
Frequenza di taglio inferiore	f _{LP} = xx Hz
Frequenza di taglio superiore	f _{HP} = xx Hz

Sommario

Schema circuitale e analisi del circuito

<u>Simulazioni</u>

Montaggio e Misure

Schema circuitale sul simulatore QUCS

Riportare qui un schema circuitale ordinato e ben leggibile dell'amplificatore disegnato sul simulatore

Simulazione del punto di lavoro dei BJT

Riportare qui lo screenshot della simulazione DC, che permetta di visualizzare il punto di lavoro dei BJT

Simulazione del punto di lavoro dei BJT

Concludere la simulazione del punto di lavoro confrontando con i calcoli:

Calcoli (stessa tabella già mostrata in slide5)

Q1	VCE=	IC=
Q2	VCE=	IC=
Q3	VCE=	IC=

Studi di Pavia

Simulazione

Q1	VCE=	IC=
Q2	VCE=	IC=
Q3	VCE=	IC=

Simulazione del Guadagno

Riportare la simulazione del guadagno in funzione della frequenza

Guadagno e Banda Passante

Concludere le simulazioni di banda e guadagno con una tabella di confronto con i calcoli

calcoli

simulazione

Guadagno a centro banda	Av=	Av=
Frequenza di taglio inferiore	f _{LP} = xx Hz	f _{LP} = xx Hz
Frequenza di taglio superiore	f _{HP} = xx Hz	f _{HP} = xx Hz

Sommario

Schema circuitale e analisi del circuito

Simulazioni

Montaggio e Misure

Fotografia del prototipo realizzato

Riportare una foto della basetta montata

Se possibile, indicare con frecce il nome dei componenti (in riferimento agli schematici già presentati)

Università degli Studi di Pavia

Misura del punto di lavoro dei BJT

Riportare un confronto tra il punto di lavoro dei BJT calcolato, simulato e misurato

Calcoli (stessa tabella già mostrata in slide5)

Q1	VCE=	IC=
Q2	VCE=	IC=
Q3	VCE=	IC=

Simulazione

Q1	VCE=	IC=
Q2	VCE=	IC=
Q3	VCE=	IC=

Misura

Q1	VCE=	IC=
Q2	VCE=	IC=
Q3	VCE=	IC=

Setup di Misura del Guadagno

Riportare uno schema a blocchi del setup di misura utilizzato per rilevare il guadagno dell'amplificatore

Aggiungere informazioni che si ritengono rilevanti (esempio, ampiezza del segnale in ingresso)

Misure di guadagno

Riportare qualche screenshot dell'oscilloscopio, con segnale di ingresso e di uscita.

Si potrebbe mettere, ad esempio, alla frequenza di taglio inferiore, superiore e a centro banda

Grafico del Guadagno Misurato

Riportare il grafico della risposta in frequenza costruito con le misure a diverse frequenze

Guadagno e Banda Passante

Concludere le confrontando banda e guadagno calcolati, simulati e misurati

	calcoli	simulazione	misure
Guadagno a centro banda	Av=	Av=	Av=
Frequenza di taglio inferiore	f _{LP} = xx Hz	f _{LP} = xx Hz	f _{LP} = xx Hz
Frequenza di taglio superiore	f _{HP} = xx Hz	f _{HP} = xx Hz	f _{HP} = xx Hz

Misura della distorsione armonica - I

Riportare lo screenshot dell'oscilloscopio con FFT del segnale di uscita quando all'ingesso è applicato un segnale di ampiezza 100mVpp

Riportare la distorsione armonica totale

Misura della distorsione armonica - Il

Riportare lo screenshot dell'oscilloscopio con FFT del segnale di uscita quando all'ingesso è applicato un segnale di ampiezza 200mVpp

Riportare la distorsione armonica totale