Elettronica I Esercitazione OP - AMP

RISPOSTA IN FREQUENZA DI CIRCUITI CON AMPLIFICATORI OPERAZIONALI OpAmp

Configurazione Invertente

Circuito ATTIVO: l'OpAmp va alimentato

OpAmp Ideale

Configurazione Invertente con OpAmp Ideale

Corto Circuito Virtuale: V⁺ = V⁻

Guadagno Configurazione Invertente:

$$G_{CI} = \frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1}$$

OpAmp µA741 – Anello Aperto Diagramma di Bode – Modulo

Vedi anche grafico a pag. 81 in basso sulle dispense

Configurazione Invertente

Circuito <u>ATTIVO</u>: l'OpAmp <u>va alimentato</u> <u>SATURAZIONE DEL NODO DI USCITA</u>

Elettronica I Lab. Didattico di Elettronica

BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA

n.3 Strumenti Utilizzati

Alimentatore

Generatore di Funzioni

Oscilloscopio Digitale

Alimentatore KEYSIGHT E36312A

Alimentatore KEYSIGHT E36312A

Tasto accensione (premere)

Lab. Didattico di Elettronica

Generatore di Tensione

(si accende il led verde)

Generatore di Tensione con n. 3

canali indipendenti con potenza totale di 80 W

DC Output Rating Collegamento Indipendente

Generatore di Tensione Collegamento Serie e Parallelo

Per selezionare modalità Serie (prima SLIDE)

Selezionare Output Setting

Per selezionare modalità Serie (seconda SLIDE)

Selezionare Operation Mode

Collegamento Serie

Selezionare Mode Series

Serie

18

Premere n.2 volte Back

Back = torna indietro

Accendere il canale 2

Impostare la tensione totale Serie a 30V

IMPORTANTE: limitare SEMPRE la corrente

Limitare la corrente a 0.1A

1: premi

Cavetti spina banana / spina banana

L'uscita DEVE ESSERE SEMPRE SPENTA

quando si collegano / scollegano i cavi banana

Posizione cavi banana Es: Serie +15V e -15V senza GND

26

Posizione cavi banana Es: Serie +15V e -15V con GND

0.1A

non colleghiamo il cavo singolo giallo banana-banana a GND perché la GND viene fornita dal Generatore di Funzioni

Collegamento Alimentatore e Basetta OpAmp

Per alimentare il circuito OpAmp

Questo tasto Accende / Spegne tutti i canali simultaneamente

1: accendere l'uscita 2

Abbiamo impostato l'alimentatore in Serie +15V e -15V 0.1A con GND + cavi banana ... ora SPEGNERE L'USCITA 2

30

Generatore di Funzioni KEYSIGHT 33500B

Generatore di Funzioni KEYSIGHT 33500B

Genera i segnali di tensione

Generatore di Funzioni KEYSIGHT 33500B

Tasto accensione (premere) (si accende il led verde)

Forma d'Onda del Segnale

Forma d'Onda Sinusoidale

1: premi Sine

Frequenza del Segnale Sinusoidale (prima SLIDE)

KEYSIGHT 33500B Series Waveform G	enerator Trueform Waveforms	
Sine,OFF,500		
Frequency 1.000,000,000kHz	Parameters	
Offset 0.000 V Phase 0.000°	Units	7 8 9
111111111111111111111111111111111111111	Modulate	
Parameters	Sweep	Trigger — Setup — Channel
Frequency Amplitude Offset Phase	Burst	Sync Output
	System	BNCs 42 Vpk to ±

1: premi Frequency

3: scegli unità di misura

Ampiezza del Segnale Sinusoidale (prima SLIDE)

1: premi Amplitude

Ampiezza del Segnale Sinusoidale (seconda SLIDE) = inserisci 100mVpp

2: inserisci valore

3: scegli unità di misura

IMPORTANTE:

controllare l'impedenza che per le nostre misure deve essere: HiZ (alta impedenza)

Cavetti spina BNC / spina BNC e T BNC

Collegare il cavo BNC all'uscita... e visto che voglio vedere il segnale anche sull'Oscilloscopio metto il T BNC

Collegare il Generatore di Funzioni a CH1 dell'Oscilloscopio Digitale

Controllare tutto il collegamento OpAmp

Accendere l'uscita (quando è accesa Channel è illuminato)

2 premi: Output On

1 premi: Channel

Silvia Roncelli

Lab. Didattico di Elettronica

Oscilloscopio Digitale Tektronix TBS2102

Oscilloscopio Digitale Tektronix TBS2102

Tasto accensione (premere)

Premi Autoset compare il segnale di ingresso su CH1

Pannello Frontale

Canali di Ingresso

Canali di Ingresso

CH1 CH2 traccia gialla traccia azzurra

Visualizzazione e posizione delle tracce

Visualizzazione canali

Controllo delle Scale di Visualizzazione

Ingressi BNC

Controllo della Scala di Visualizzazione

Anche in questo caso il segnale **NON** viene alterato!!! E' solo la visualizzazione che cambia!!!

Accoppiamento in ingresso Coupling: (Configurare CH1 ere CH2 ere)

Accoppiamento in ingresso Coupling: (Configurare CH1 premi C ... e CH2 premi

4: esci dal Menu

5: regolazione Fine movimento barra 1 e premi per passare alla barra 2

Misura del ∆t (Misurare CH2 – CH1)

5: regolazione Fine movimento barra 1 e premi per passare alla barra 2

Sonda Oscilloscopio 10.1

Collegare la Sonda dell'Oscilloscopio sul canale CH2

CONTROLLARE eventuale ATTENUAZIONE INPUT = Cavo BNC = CH1 = 1X OUTPUT = Sonda Oscilloscopio = CH2 = 10X

Collegare la Sonda alla Basetta dell'OpAmp

Accendere l'uscita 2 dell'Alimentatore e premere Autoset sull'Oscilloscopio/

Schermo dell'Oscilloscopio Digitale

per cambiare la Scala dei tempi (asse X) devo ruotare

Elettronica I Lab. Didattico di Elettronica

Per ogni problema:

Dispense del Laboratorio Tecnico del Laboratorio Docente / Tutor

Basetta OP-AMP

Basetta OP-AMP posizione degli interruttori D = destra 2.3.1. L'amplificatore invertente (S, S, X) Lo schema elettrico di un amplificatore realizzato con un amplificatore operazionale nella configurazione invertente è riportato nella fig.45. R₂ Vo $R_1 = 1 k\Omega$ $R_2 = 100 k\Omega$ Ao = $\mu A741$ fig.45 Schema elettrico dell'amplificatore invertente.

S = sinistra S X = indifferente 66

Configurazione Invertente

Circuito ATTIVO: l'OpAmp va alimentato

Basetta OP-AMP R₂ R₁ Ao Vo Vs $R_1 = 1 \ k\Omega$ $R_2 = 100 \ k\Omega$ $A_0 = \mu A741$ fig.45 Schema elettrico dell'amplificatore invertente.

Misura di Modulo e Fase di F(jω) al variare di ω

Funzione risposta in frequenza: F(jω) = Vout(jω)/Vin(jω) Scopo:

1. misurare |F(j\omega)| e \phi = arg[F(j\omega)] al variare di \omega

2. Tracciare i diagrammi di Bode di modulo e fase di F(j ω) e determinare fc

Procedura: creazione di una tabella di dati

Freq [Hz]	Vin [V]	Vout [V]	Vout/Vin	Vout/Vin _{dB}	∆t [s]	φ [°]
100		12				
200						
500						
1k		- 0	2			
2k		12	2			
5k						
2222						
1M						

Misura di Ampiezza: |F(jω)|

Misura delle ampiezze di V_{in} e V_{out} tramite i cursori orizzontali

Misura di tensione picco-picco (Misurare CH1 🔯 ... e CH2 📷)

5: regolazione Fine movimento barra 1 e premi per passare alla barra 2

Misura del Δt (Misurare CH2 – CH1)

5: regolazione Fine movimento barra 1 e premi per passare alla barra 2

Configurazione Invertente Diagramma di Bode - Modulo

OpAmp µA741 - Anello Aperto Diagramma di Bode - Modulo

Vedi anche grafico a pag. 81 in basso sulle dispense

Configurazione Invertente Diagramma di Bode - Fase

Configurazione Non Invertente

Configurazione Non Invertente Diagramma di Bode - Modulo

78

Configurazione Non Invertente Diagramma di Bode - Fase

79

Se il Professore decide di concludere l'Esercitazione

Spegnere il PC ed il Monitor e poi fare i seguenti 5 passaggi

Spegnere l'uscita del Generatore di Funzioni

2: premi Output Off

1: premi Channel

Silvia Roncelli

Lab. Didattico di Elettronica

Prima di scollegare OpAmp

Staccare i cavi dalla basetta OpAmp

Spegnere tutti gli strumenti

Staccare tutti i cavi dagli strumenti

Corto Circuito Virtuale «Reale»

Effetto del guadagno ad anello aperto sul Corto Circuito Virtuale: misura dell'ampiezza della tensione V⁻ al variare della frequenza $(V^+ = 0 V)$

OpAmp µA741 – Anello Aperto Diagramma di Bode – Modulo

Vedi anche grafico a pag. 81 in basso sulle dispense

Amplificatore Invertente Risposta al Gradino

 t_R : Rise Time (Tempo di Salita) $\rightarrow f_c = 0.35 / t_R$

89

Misura del Tempo di Salita Rise Time (Configurare CH2 🔯)

4: esci dal Menu (premi 1 volta) 90

Misura del Tempo di Salita Rise Time

Integratore di Miller Approssimato

Integratore di Miller Diagramma di Bode - Modulo

Integratore di Miller Diagramma di Bode - Fase

Integratore di Miller Risposta all'Onda Quadra (1)

Configurazione Non Invertente

Configurazione Non Invertente Diagramma di Bode - Modulo

Configurazione Non Invertente Diagramma di Bode - Fase

104

Effetto della Tensione e delle Correnti di Offset

A causa degli offset di tensione e corrente, <u>in assenza di segnale</u> <u>applicato</u>, si osserva una tensione di uscita V_0 pari a: $V_0 = e_0 (1 + R_2 / R_1)$ $+ R_2 (I^- - I^+) \Rightarrow$ $V_0 \approx e_0 (1 + R_2 / R_1)$

Effetto della Tensione e delle Correnti di Offset

A causa degli offset di tensione e corrente, <u>in assenza di segnale</u> <u>applicato</u>, si osserva una tensione di uscita V_0 pari a: $V_0 = e_0 + R (I^- - I^+) \Rightarrow$ $V_0 \approx R (I^- - I^+)$

FINE Esercitazione OP-AMP

Spegnere il PC ed il Monitor e poi fare i seguenti 5 passaggi

Spegnere l'uscita del Generatore di Funzioni

2: premi Output Off

1: premi Channel

Silvia Roncelli

Lab. Didattico di Elettronica
Prima di scollegare OpAmp

Staccare i cavi dalla basetta OpAmp

Spegnere tutti gli strumenti

Staccare tutti i cavi dagli strumenti

