

RISPOSTA IN FREQUENZA DI CIRCUITI RC / CR PASSA BASSO / PASSA ALTO

Silvia Roncelli

Lab. Didattico di Elettronica

RC Passa Basso Schema Circuitale

RC Passa Basso Diagramma di Bode - Fase

Elettronica I Lab. Didattico di Elettronica

BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA

n.2 Strumenti Utilizzati

Generatore di Funzioni

Oscilloscopio Digitale

Generatore di Funzioni KEYSIGHT 33500B

Silvia Roncelli

Generatore di Funzioni KEYSIGHT 33500B

Genera i segnali di tensione

Generatore di Funzioni KEYSIGHT 33500B

Tasto accensione (premere) (si accende il led verde)

Forma d'Onda del Segnale

Forma d'Onda Sinusoidale

1: premi Sine

Frequenza del Segnale Sinusoidale (prima SLIDE)

KEYSIGHT 33500B Series Waveform Generator True	form Waveforms 1 2 3
Sine,OFF,50D	Parameters 4 5 6
Amplitude 100.000 V Offset 0.000 V	Units 7 8 9
Phase 0.000°	Modulate 0 +/- 0
Parameters	Sweep Trigger — Setup — Channel
Frequency Amplitude Offset Phase	Burst Sync Output
	System

1: premi Frequency

Frequenza del Segnale Sinusoidale (seconda SLIDE) = inserisci 1 kHz

2: inserisci valore

	Sine OFF 500				Waveforms	
	Frequency	50			Parameters	4 5 6
	Amplitude	100.0mVpp	$/ \setminus$		Units	789
	Phase	0.000°	· \	、 / ^{*1}	H	
					Modulate	
-	Parameters	S		-	Sweep	Trigger — Setup — Channel
0	μHz	mHz Hz	kHz MHz	Cancel	Burst	Sync Output
0	0		00		Curtor	10 BINCs 42 Vpk to ± 50

3: scegli unità di misura

Ampiezza del Segnale Sinusoidale (prima SLIDE)

1: premi Amplitude

Lab. Didattico di Elettronica

Ampiezza del Segnale Sinusoidale (seconda SLIDE) = inserisci 1Vpp

2: inserisci valore

Sine OFF FRO		Waveforms	
Sille, OFF, SUL		Parameters	4 5 6
Amplitude	500.000,000,0KHZ		
Offset	0.000 V	Units	
Phase	0.000°	Modulate	$\bigcirc \bigcirc $
	¥		
Parameter	S	Sweep	Crigger — Setup — Channel
mVpp	Vpp mVrms Vrms dBm	Cancel	Sync Output
0)	and the second		10-100

3: scegli unità di misura

IMPORTANTE:

controllare l'impedenza che per le nostre misure deve essere: HiZ (alta impedenza)

Lab. Didattico di Elettronica

Cavetti spina BNC / spina BNC e T BNC

Collegare il cavo BNC all'uscita... e visto che voglio vedere il segnale anche sull'Oscilloscopio metto il T BNC

Collegare il Generatore di Funzioni a CH1 dell'Oscilloscopio Digitale

Controllare tutto il collegamento dell'ingresso RC - CR

Accendere l'uscita (quando è accesa Channel è illuminato)

2 premi: Output On

1 premi: Channel

Oscilloscopio Digitale Tektronix TBS2102

Oscilloscopio Digitale Tektronix TBS2102

Tasto accensione (premere)

Premi Autoset compare il segnale di ingresso su CH1 Tektronix TBS 2000 SERIES DIGITAL OSCILLOSCOPE Undo Autoset

111 / 0.00V

20.0mV

Canali di Ingresso

Canali di Ingresso

CH1 CH2 traccia gialla traccia azzurra

Visualizzazione e posizione delle tracce Visualizzazione canali Controllo delle Scale di

Visualizzazione

Ingressi BNC

Controllo della Scala di Visualizzazione

Anche in questo caso il segnale **NON** viene alterato!!! E' solo la visualizzazione che cambia!!!

4: esci dal Menu

5: regolazione Fine movimento barra 1 e premi per passare alla barra 2

Misura del Δt (Misurare CH2 – CH1)

1: premi

5: regolazione Fine movimento barra 1 e premi per passare alla barra 2

Sonda Oscilloscopio 10.1

Silvia Roncelli

Lab. Didattico di Elettronica

Collegare la Sonda dell'Oscilloscopio sul canale CH2

CONTROLLARE eventuale ATTENUAZIONE INPUT = Cavo BNC = CH1 = 1X OUTPUT = Sonda Oscilloscopio = CH2 = 10X

Collegare la Sonda alla Basetta del RC - CR

fig.24 Schema elettrico del circuito RC passa-basso.

fig.28 Schema elettrico del circuito CR passa-alto.

Premere Autoset sull'Oscilloscopio

Schermo dell'Oscilloscopio Digitale

per cambiare la Scala dei tempi – (asse X) devo ruotare

Elettronica I Lab. Didattico di Elettronica

Per ogni problema:

Dispense del Laboratorio Tecnico del Laboratorio Docente / Tutor

Basetta RC - CR -100 R 0 $\mathbf{R} = 4.7 \text{ k}\Omega$ $\mathbf{C} = 2.2 \text{ nF}$ Vs Vo fig.24 Schema elettrico del circuito RC passa-basso. C $\mathbf{R} = \mathbf{4.7} \mathbf{k} \Omega$ $\mathbf{C} = \mathbf{2.2} \mathbf{n} \mathbf{F}$ 2 Vs Vo 3 0 fig.28 Schema elettrico del circuito CR passa-alto.

RC Passa Basso Schema Circuitale

Misura di Modulo e Fase di F(jω) al variare di ω

Funzione risposta in frequenza: $F(j\omega) = V_{out}(j\omega)/V_{in}(j\omega)$

Scopo:

- **1.** misurare |F(jω)| e φ = arg[F(jω)] al variare di ω
- 2. Tracciare i diagrammi di Bode di modulo e fase di F(j ω) e determinare f_c

Procedura: creazione di una tabella di dati

Freq [Hz]	Vin [V]	Vout [V]	Vout/Vin	Vout/Vin _{dB}	∆t [s]	φ [°]
100		12				× *
200						
500						
1k						
2k		12				
5k						
2000						
1M						

Misura delle ampiezze di V_{in} e V_{out} tramite i cursori orizzontali

1: premi

5: regolazione Fine movimento barra 1 e premi per passare alla barra 2

RC Passa Basso Diagramma di Bode - Modulo

RC Passa Basso Diagramma di Bode - Modulo

Misura di Fase: φ = arg[F(jω)]

Misura del "ritardo" <u>∆t</u> di V_{out} rispetto a V_{in} tramite i cursori verticali

$$\Delta t : T = \phi : 360 \implies \phi = -360^{\circ} \cdot \Delta t / T = -360^{\circ} \cdot \Delta t \cdot f$$

Misura del Δt (Misurare CH2 – CH1)

1: premi

5: regolazione Fine movimento barra 1 e premi per passare alla barra 2

RC Passa Basso Risposta al gradino di Tensione

 t_R : Rise Time (Tempo di Salita) $\rightarrow f_c = 0.35 / t_R$

CR Passa Alto Schema Circuitale

Silvia Roncelli

Lab. Didattico di Elettronica

CR Passa Alto Risposta al gradino di Tensione

Spegnere il PC ed il Monitor

Spegnere il Generatore di Funzioni, l'Oscilloscopio Digitale e staccare tutti i cavi.