

Università degli Studi di Pavia

Facoltà di Ingegneria

Dottorato di Ricerca in Microelettronica
VIII nuova serie (XXII ciclo)

Application Specific Instruction-set
Processor for Hard Disk Drive

Servo operation:
the Microprogrammed Servo Sequencer

Advisor: Prof. Carla VACCHI

Ph.D. Dissertation
of Paola BALDRIGHI

to Stefano

5

Contents

1 Introduction ...7

2 Hard Disk Drive Servo operations ...9

2.1 The Hard Disk Drive ... 10

2.2 Servo data and operations ... 10

2.3 Hardwired vs. programmable approach .. 11

2.4 Bibliography .. 15

3 The Microprogrammed Servo Sequencer .. 17

3.1 MIPS .. 18

3.2 Application Specific Instruction-set Processor architecture 18

3.3 Microprogrammed Servo Sequencer Architecture .. 20

3.3.1 The elaborating core .. 20

3.4 Instruction-Set Architecture .. 23

3.4.1 Signal Mapping .. 26

3.4.2 JUMPCS instruction .. 28

3.4.3 Generic Counter ... 29

3.4.4 Servo Gate control ... 29

3.4.5 Embedded counters .. 30

3.5 Reprogramming process .. 30

3.6 Bibliography .. 35

4 The verification process ... 37

4.1 The importance of verification .. 38

4.2 Assertion based verification .. 42

4.3 Critical operations ... 44

4.3.1 JUMPCS .. 45

4.4 Simulation based verification .. 53

4.5 Bibliography .. 55

5 Case study and synthesis results ... 57

5.1 Regular Servo Sequencer Finite State Machine .. 58

5.2 Microprogrammed Servo Sequencer approach ... 60

5.3 Microprogrammed Servo Sequencer dimensioning .. 62

5.4 Behavioral matching verification .. 63

6

5.5 Synthesis results ...64

5.6 Bibliography ...69

6 Conclusion ... 71

7 Figures index ... 73

8 Tables index ... 77

9 Appendixes .. 79

9.1 Property Specification Language assertion ..79

9.2 MSS Firmware ...81

7

1 Introduction

The Hard Disk Drive is the most common device used for data storage. The introduction

of Perpendicular recording provides an increasing of hard disk user data density. The di-

rect consequence is the increasing complexity of the hard disk drive read/write channel

logic: in particular also the operation of track seek and track following must be more ac-

curate in respect of new media specs. In fact each Hard Disk Drive read/write system

needs a control logic for the head positioning to identify the correct user data sector that

has to be read or written. These positioning operations are controlled by the Servo Sub-

system that is part of the Hard Disk Drive R/W channel. Servo Subsystem realizes the

correct head positioning on the track decoding servo sectors (track servo data are record-

ed along the tracks).

Servo Subsystem is usually implemented with an hardwired approach: a Finite State Ma-

chine. The presence of different Hard Disk Drive Market Segments, characterized by var-

ious kinds of media supports, with the necessity of peculiar Read/Write channel systems,

needs different Servo sectors and consequently different Servo subsystem. The Finite

State Machine approach reaches the best performance, but loses in terms of flexibility,

since the behavior of the Servo subsystem couldn’t be modified after Integrated Cir-

cuit (IC) fabrication if some changes of the design are needed: the hardwired Finite State

Machine implementation, and so its behavior, cannot be modified.

The proposed ASIP, the Micro-programmed Servo Sequencer (MSS), maintains the same

behavioral characteristics of the Servo Subsystem considering also same performances in

terms of Servo System elaborating frequency, adding an important feature: its flexibility.

The MSS Instruction Set Architecture (ISA) has been customized to emulate a generic

Servo System behavior and takes into consideration different Hard Disk Drive market

segments. The ISA contains all the fundamental instructions for the correct description of

the Servo System behavior. The simple ASIP architecture and some embedded operations

allow the achievement of the appropriate performance, needed to implement also the most

8

critical control systems. The Microprogrammed Servo Sequencer flexibility characteristic

concerns two aspects. The first one involves the parametric feature of the RTL source

code that describes Microprogrammed Servo Sequencer: it is possible to dimension all In-

struction Set fields (except the operating code that identify instruction type) to fit differ-

ent Servo system features. The second aspect involves the reprogramming feature of the

MSS Instruction Memory, MSS Register Memory and MSS Reconfigurable I/O ports: the

reprogramming process allows initializing the MSS behavior with the appropriate firm-

ware according to the HDD market segment, so it is possible to make changes of this be-

havior after IC fabrication reprogramming the microcontroller with a specific firmware,

thus reducing design costs of different Servo System.

This work proposes a complete front end design for the description of Servo System.

In Chapter 2 the Servo System operations are explained and the hardwired approach is

compared with the programmable one.

In Chapter 3 the Microprogrammed Servo Sequencer is presented: it is composed by an

elaborating core, embedded counters, programmable I/O ports and a Reprogramming Fi-

nite State Machine; the MSS instruction set is described and custom instructions, such as

COUNTER one, are explained in details.

Chapter 4 begins with an introduction to the verification process, then Assertion Based

Verification explanation and an example of this verification applied to JUMPCS instruc-

tion are shown.

In Chapter 5 the Microprogrammed Servo Sequencer is customized on a real case of Ser-

vo System. A dedicated firmware has been written, the MSS has been reprogrammed, its

correct behavior has been verified and synthesis results are compared with real Servo

System.

9

2 Hard Disk Drive Servo operations

ach Hard Disk Drive (HDD) needs a control logic, that realizes

the heads alignment, for the correct user data reading or writ-

ing. This logic is called Servo Subsystem and it is realized by

means of a hardwired Finite State Machine. The Application Specific

Instruction-set Processor (ASIP) programmable approach is an alter-

native implementation for reducing the non-recurring design, verifi-

cation, layout and test costs: it is possible to map different genera-

tions of Servo FSM onto the same ASIP.

E

The Microprogrammed Servo Sequencer

10

2.1 The Hard Disk Drive

The Hard Disk Drive (HDD) is a mass storage device formed by a spindle which holds

one or more flat circular disks called platters, made from a non-magnetic material (for ex-

ample glass or aluminum alloy) and coated with a ferromagnetic layer on which user data

are recorded by means of a magnetization operation (Figure 2.1.1).

Figure 2.1.1 Hard Disk Drive

The platters are spun at high speed and different heads, moved by means of a mechanic

arm over the track that has to be read/written, realize the data read and write operations

reading or modifying the magnetization of the ferromagnetic material. Each platter is or-

ganized in tracks, concentric rings, separated by interspaces called gaps. Each track is or-

ganized in many sectors that generally contain 512 bytes each and are separated by spaces

called intersector gaps. Due to the Hard Disk geometry the more external tracks contain

more sectors than the more internal ones. The read and write operations are realized mov-

ing the heads over the correct track; thanks to the disk rotation it is possible to read or

write the desired sector. Each platter needs two heads for reading and writing process.

The correct head alignment over the correct track is achieved by means of servo informa-

tion reading [2.1], [2.2].

2.2 Servo data and operations

Each Hard Disk Drive (HDD) read/write system needs a control logic for the head posi-

tioning to identify the correct user data sector that has to be read or written. These posi-

tioning operations are controlled by the Servo Subsystem that is part of the Hard Disk

Drive R/W channel [2.3], [2.4]. Not only at the read/write system startup and every time

there is a track change, but also during track following, the Servo Subsystem is conti-

user data
sector Disks (platters)

coated with a
ferromagnetic
layer

track

actuator
control logic

read/write heads

11

Figure 2.2.1 User, normal servo and miniwedge servo data

nuously running and aligns the head over the track itself.

The servo data are recorded along each track, distributed in each wedge of the Hard

Disk (Figure 2.2.1). When the read/write head moves from one track to another (track

seek) it is necessary to read a normal servo sector that contains information about the sig-

nal phase and gain (preamble), the end-of-synchronization recognition sequence (Servo

Address Mark), the encoded servo sector location on the hard disk (graycode), the head

perfect positioning on the hard disk track (A-D bursts) and eventually the hard disk track

eccentricity (Repetable Run Out).

During recording or retrieval of user data while staying on the same track it is necessary

to regulate the head position (track following). The miniwedge servo sector supplies this

information: it contains only the preamble, the Servo Address Mark and the bursts fields

[2.5], [2.6] [2.7].

2.3 Hardwired vs. Programmable approach

The Servo Subsystem realizes the correct head positioning on the track decoding the ser-

vo sectors by means of hardwired Finite State Machines (FSM). The main one, the arbi-

ter, decides on the behavior of the Servo Subsystem: Regular (for correct head position-

ing) or Spiral (Repeatable Run Out writing process). The Regular process is implemented

by the Regular Servo Sequencer (RSS) Finite State Machine that realizes the correct head

positioning with the support of other Servo system embedded blocks. A hardwired FSM

approach would reach the best performance, but losing in terms of flexibility, since after

Integrated Circuit (IC) fabrication the behavior of the Servo subsystem couldn’t be mod-

ified if some changes of the design are needed.

The scaling down process increases the design complexity, so non-recurring design and

manufacturing costs (Figure 2.3.1). It is possible to integrate more transistors on the same

die and their number is exponentially high. This complexity forces the introduction of dif-

ferent computer-aided design (CAD) tools, more expensive to acquire and maintain, to

better manage the hierarchical block level designs. In addition to the digital part, it is

The Microprogrammed Servo Sequencer

12

10

15

20

25

30

35

40

45

50

Technology Nodes (nm)

180 150 130 90 65 45
0

5

D
ev

el
o

p
m

en
t

C
o

st
 (

$
M

)
Mask & wafers

Test & product engineering

Sofware
Design/Verification & layout

Figure 2.3.1 ASIC non-recurring design and manufacturing costs

possible to integrate also analog and mixed signal components on the same die increasing

also design, verification and layout costs. Besides the chance of silicon failure is quite

high causing higher test and product engineering costs. At last the cost of a mask set for

sub-100nm designs is multi-million dollar [2.8].

These high non-recurring design and manufacturing costs imply either larger break even

volumes at fixed per-unit costs, or prohibitive per-unit costs at fixed volumes. The pro-

grammable approach is an alternative implementation to ASICs that is rapidly emerging.

An example is the Application Specific Instruction-set Processors (ASIPs). The pro-

grammability of these devices enables the mapping of different generations of an applica-

tion onto the same ASIP reducing so the non-recurring design, verification, layout and

test costs. A programmable approach provides also a much lower risk because for differ-

ent application generations it is necessary to write and debug only firmware, not working

hardware.

The firmware solutions on an ASIP cause a productivity benefit, but also a loss of design

quality (measured in area, delay, power). This disadvantage is acceptable because they

are more flexible. The ASIP approach allows designing an embedded device for a specific

application maintaining the ASIC performances with a programmable characteristic.

The presence of different Hard Disk Drive Market Segments, characterized by various

kinds of media supports, with the necessity of peculiar Read/Write channel systems,

needs different Servo sectors and consequently different Servo subsystem. A programma-

ble architecture, an Application Specific Instruction-set Processor (ASIP) [2.9],[2.10] re-

duces the high cost of Servo Subsystem design. The proposed ASIP, the Micro-

programmed Servo Sequencer (MSS), maintains the same elaborating frequency of the

Regular Servo Sequencer and offers an incomparable degree of flexibility.

13

The MSS Instruction Set Architecture (ISA) has been customized for the emulation of a

generic RSS behavior and takes into consideration different Hard Disk Drive market

segments. The ISA contains all the fundamental instructions for the correct description of

the Regular Servo Sequencer. The simple ASIP architecture and some embedded opera-

tions allow the achievement of the appropriate performance, needed to implement also the

most critical control systems, like RSS [2.11]. The reprogramming process allows initia-

lizing the Micro-programmed Servo Sequencer behavior with the appropriate firmware

according to the HDD market segment, so after IC fabrication it is possible to make

changes of this behavior reprogramming the microcontroller with a specific firmware,

thus reducing design costs of future RSS.

14

15

2.4 Bibliography

[2.1] C. D. Mee and E. D. Daniel, “Magnetic Storage Handbook”, McGraw-Hill
Professional, New York, USA, 1996.

[2.2] Marco Maurizio Maggi, “Progetto di un controllore riconfigurabile per la ge-

stione dei segnali servo nell’hard disk drive”, Tesi di Laurea Specialistica in
Ingegneria Elettronica, Università degli Studi di Pavia, a.a. 2006/2007.

[2.3] S. R. Tawfeic, “Track seeking control for hard disk drives using the approach-

ing index switching algorithm”, Proc. 2008 International Conference on

Computer and Communication Engineering, pp. 172 – 175, May 2008.

[2.4] H. Yada, T. Yamakoshi, H. Ishioka, and N. Hayashi, “Synchronous servo

scheme using maximum-likelihood detectors”, IEEE Transactions on Mag-

netics, Vol. 39, no. 6, pp. 3593 – 3603, Nov. 2003.

[2.5] H. Yada, H. Ishioka, T. Yamakoshi, Y. Onuki, Y. Shimano, M. Uchida, H.

Kanno, and N. Hayashi, “Head positioning servo and data channel for HDDs
with multiple spindle speeds”, IEEE Transactions on Magnetics, Vol. 36, no.
5, pp. 2213, Sep. 2000.

[2.6] T. Hamaguchi, H. Maeda, K. Usui, and K. Shishida, “An alternating DC track

servo pattern for perpendicular recording”, IEEE Transactions on Magnetics,
Vol. 41, no. 10, pp 2872, Oct. 2005.

[2.7] Al-Mamun, T.H. Lee, G.X. Guo, W.E. Wong, W.C. Ye, “Measurement of po-

sition offset in hard disk drive using dual frequency servo bursts”, IEEE

Transactions on Instrumentation and Measurement, Vol. 52, no. 6, pp. 1870 –
1880, Dec. 2003.

[2.8] D. R. Martinez, R. A. Bond, M. M. Vai, “High Performance Embedded Com-

puting Handbook: A Systems Perspective”, CRC Press Inc, June 2008.

[2.9] K. Keutzer, S. Malik, A. R. Newton, “From ASIC to ASIP: The Next Design

Discontinuity”, Proceedings of VLSI in Computers and Processors, pp. 84-
90, 2002.

[2.10] S. Saponara, L. Fanucci, S. Marsi, G. Ramponi, D. Kammler, E.M. Witte,

“Application-Specific Instruction-Set Processor for Retinex-Like Image and
Video Processing”, IEEE Transactions on Circuits and Systems II: Express

Briefs, Vol. 54, Issue 7, pp. 596 – 600, July 2007.

[2.11] R. Leupers, K. Karuri, S. Kraemer, M. Pandey, “A design flow for configura-
ble embedded processors based on optimized instruction set extension synthe-
sis”, Proceedings of Design, Automation and Test, Vol. 1, pp. 6, March 2006.

16

17

3 The Microprogrammed Servo Sequencer

he Microprogrammed Servo Sequencer (MSS) is an Applica-

tion Specific Instruction-set Processor (ASIP). A typical RISC

processor, the MIPS (Microprocessor without Interlocked

Pipeline Stages), has been studied to derive MSS elaborating core ar-

chitecture. The MSS Instruction-set implements Servo control logic

operation. To achieve better performances some embedded logic

which communicates with MSS are introduced. A reprogramming

process by means of a Finite State Machine can change the behavior

of MSS.

T

The Microprogrammed Servo Sequencer

18

3.1 MIPS

The MIPS (Microprocessor without Interlocked Pipeline Stages) is a RISC processor with

4 pipeline stages (Figure 3.1.1) born in 1981 at Stanford University with professor Hen-

nessy. Each instruction has to go through the Instruction Fetch, the Instruction Decode,

the execute, the memory access and the write back. The first MIPS processors have a 32-

bit architecture; the last ones have a 64-bit architecture. In the following paragraphs the

Microprogrammed Servo Sequencer Instruction-Set Architecture has been described in

comparison to MIPS features.

Figure 3.1.1 MIPS architecture

3.2 Application Specific Instruction-set Processor architecture

The ASIP Architecture is derived from the Microprocessor without Interlocked Pipeline

Stages, which presents more than 64 different 32 bit instructions [3.1]. The MIPS instruc-

tion-set is a Reduced Instruction-set Computer (RISC) approach. The characteristic of a

RISC approach are:

� high clock cycle frequency;

� low instruction execution time;

� fixed instruction length which involves simple instruction-set architecture;

� large firmware because the instruction-set is composed by simple instructions.

The alternative to RISC approach is the CISC architecture that presents these features:

� reduced clock cycle frequency;

� high instruction execution time due to complex instructions;

� not fixed instruction length;

� small firmware because CISC instructions implement complex operations.

The choice of a RISC approach brings to simpler microcontroller hardware architecture

than a Complex Instruction-set Computer (CISC) one. The memory architecture is Har-

vard (Figure 3.2.1): there are two memories for data and instruction, so it is possible to

access in one clock cycle both to data memory and to instruction memory. The Von

19

Neumann (Princeton) memory architecture implies only one memory for both data and

instructions decreasing microcontroller performances: the execution of a single instruc-

tion may need at least two clock cycles increasing firmware execution latency (Figure

3.2.2).

Program Memory

ALU

Program

Control

Input

Output

Program

bus

Data Memory

Data

bus

Figure 3.2.1 Harvard memory architecture

Shared Memory

Stores Program and Data

ALU

Program

Control

Input

Output

Program/data

bus

Figure 3.2.2 Von Neumann memory architecture

Commercial microcontrollers have 16, 32 or 64 bit architecture. The Microprogrammed

Servo Sequencer has an 18 bit architecture customized for the specific application.

The Microprogrammed Servo Sequencer

20

3.3 Microprogrammed Servo Sequencer Architecture

The Microprogrammed Servo Sequencer Architecture is composed by an elaborating

Core, programmable ports, 4 fixed module embedded counters for Servo operations and a

generic programmable one, managed by COUNTER instruction (Figure 3.3.1). MSS is

described in RTL VHDL language. Its code is parametric to easily change registers and

instruction fields’ length. In the MSS reprogramming phase the Servo designer writes the

firmware for registers and signals initialization (signal mapping), and the instructions that

have to be executed by the Processor according to the RSS behavior.

Figure 3.3.1 Microprogrammed Servo Sequencer architecture

The most important characteristic of this Application Specific Instruction-set processor is

its I/O ports programmability. The MSS has to be used to substitute different Servo sub-

system belonging to different Hard Disk Drive system, so the input and output signals

may change from Hard Disks to others. By means of firmware reprogramming it is possi-

ble to define precise correspondences between hardware and signal labels recording this

information in the data memory. This process is called signal mapping and it is explained

in 3.4.1.

3.3.1 The elaborating core

The elaborating core (Figure 3.3.2) is based on adapted MIPS architecture: it is composed

of a Program Counter (PC), an Instruction Unit (IU), a Register Unit (RU) and an Arith-

metic Logic Unit (ALU). The MSS architecture performs the Instruction Fetch through

the PC and the IU, the Instruction Decode through the RU and the Execute by the ALU.

The Memory Access process is not performed: the Microprogrammed Servo Sequencer

21

has only Register Unit and Instruction Unit, but not external memory. So that it can have

only two pipeline stages in spite of four achieving high performance. The Write-Back

process is substituted by the STORE instruction, because it’s not necessary to memorize

all the executed instructions results.

PC

INSTRUCTION

UNIT

REGISTER

UNIT

D
D ALU

D

D

D

D

ACC

CLK CLK CLK CLKRST RSTRSTRST

instr_vs_pc

addr_vs_pc

instrAddr

overflow

instr

Port_out

Port_in

rd1

rd2

mask1

mask2

AluOp

Res

overflow

mask1

mask2

AluOp

a

binstr

Figure 3.3.2 MSS elaborating core

The PC provides the address instrAddr of the instruction that has to be read in the IU; it

can be programmed with the number of instructions that are contained in the IU. The in-

structions are collected in sequence by means of a counter. It is possible also to have an

out of order execution caused by J instruction, such as JUMP. The configuration signals

instr_vs_pc and addr_vs_pc manage this operation.

Figure 3.3.3 Instruction Memory details

The Microprogrammed Servo Sequencer

22

The Instruction Unit (Figure 3.3.3) contains a RAM single port for the firmware instruc-

tions memorization. The input signal instrAddr from PC provides the address of the in-

struction that has to be collected from RAM. The output signal instr represents the in-

struction which has to be executed. PC and IU manage also the control of J instructions

through an embedded handshake protocol by means of instr_vs_pc and addr_vs_pc sig-

nals.

Figure 3.3.4 Register Unit details

The Register Unit (Figure 3.3.4) is composed by a RAM dual port memory (if an R-type

instruction has to be executed it is necessary to read two different values from RAM) and

a control logic for the management of signal mapping. A unique addressing space for in-

ternal memory registers and I/O ports signals have been defined. In Figure 3.3.5.a and

Figure 3.3.5.b two addressing space examples are shown: in the Servo application ver-

sion 1, for example related to a low end market segment Servo, it is necessary to define

more information about signal mapping (due to the need of more in/out signals) than in

the Servo application version 2, for example related to a high end market segment.

The Arithmetic Logic Unit (ALU) executes logic and arithmetic operations between a and

b coming from RU. If rd1 and/or rd2 are related to rs1 and rs2 signal labels mask1 and

mask2 input contain information about the significant bits of these two signals (rd1 and

rd2 dimension is 12 bit, but a signal dimension can have lower length). Whenever the

ALU executes an operation, its result is memorized in the embedded register accumulator

Acc so that during firmware execution every instruction can access to the previous calcu-

lated value. The output signal ovf is generated for the communication with RU concerning

instruction such as COMPI, ADD and COMPNI.

23

registers

2n-1unused

0

2n-1

Signal mapping

Control

REGISTER

MEMORY

2
n
word x

m bit

Signal

mapping

2n-2

a)

registers

2n-1unused

0

2n-1

Signal mapping

Control

REGISTER

MEMORY

2
n
word x

m bit

Signal

mapping

2n-2

b)

Figure 3.3.5 a) Addressing space Servo version 1 example 1; b) Addressing space Servo version 2 example

3.4 Instruction-Set Architecture

The MSS ISA is derived from the MIPS ISA (Figure 3.4.1) and it has been reduced from

more than 64 to 16 instruction types: only the necessary ones are maintained and some of

them are modified to customize the architecture for Regular Servo Sequencer emulation.

It presents three different kinds of instructions: Register (R), Immediate (I) and Jump (J)

instructions (see Figure 3.4.2), but the instructions fields number and length are reduced.

aluOp rs rtRRR:

RRI:

J:

rd shamt funct

aluOp rs rt address

aluOp address

Figure 3.4.1 MIPS instruction-set

aluOp

aluOp

aluOp

rs1

rs1

rs2

const

immediate

R:

I:

J:

Figure 3.4.2 MSS Instruction-set

In fact there are only three fields (two in J instruction) with instructions codification in

the aluOp field (Arithmetic Logic Unit operation). This original implementation is due to

the need of reduce instruction bit length to preserve block size (and power dissipation). In

fact a 4 bit instructions encoding in spite of MIPS ISA 6 bit one is introduced. The MIPS

ISA (Figure 3.4.3) instruction length is reduced from 32 bit to a lower length: rd, shamt,

funct fields are eliminated because they are not necessary for the dedicated MSS IS; ad-

The Microprogrammed Servo Sequencer

24

dress and immediate fields are reduced because analyzing different Servo applications

their firmwares have less than 1 million instructions (20 bits are enough for instructions

addressing). In Figure 3.4.4 an example of MSS dimensioning has been shown: the MIPS

6

6

6

5

5

5

5

5 5 6

26

16

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334

RRR

RRI

J
aluOp

rs

rt

rd

shamt

funct

address

immediate

Figure 3.4.3 MIPS Instruction-set

4

4

4

7

7

7

14

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

RRR

RRI

J

aluOp

rs1

rs2

immediate

const

Figure 3.4.4 MSS Instruction-set

Table 3.4.1 Instruction-set architecture

Instruction Type

R I J

AND *rs1&*rs2 COMPI If *rs1=const -> ovf = 2 JUMP
branch un-
conditioned

OR *rs1|*rs2 WAIT ctrl SG, HALT NOP No op

ADD *rs1+*rs2 COMPNI If *rs1!=const -> ovf = 2 JUMPCS
branch condi-

tioned

CONCAT *rs1&*rs2 SLLR *rs1<<imm

COUNTER generic counter STORE *rd=acc

SET *rs1=sig SET_V *rd=const

NOT Not (rs1)

25

ISA instruction length is reduced from 32 bit to 18 bit length [3.2]. The Instruction Set

definition is derived from the behavior of the Regular Servo Sequencer: the firmware

program based on the MSS IS substitutes the RSS operations. Each RSS state manages

control signals that drive embedded control system blocks, like detectors, for the recogni-

tion of Servo pattern. The Microprogrammed Servo Sequencer firmware describes this

state diagram behavior.

In Table 3.4.1 the R, I and J instructions have been shown in details. The R instructions

manage two operands rs1 and rs2 which can be two registers, two signals or a register

and a signal. It is possible to have also the accumulator Acc in spite of rs1 or rs2. These

instructions are:

� AND operates the “and” bitwise of two values:

- rs1 and rs2 registers from data memory,

- rs1 and rs2 input signals,

- rs1 register and rs2 input signal or vice versa,

- rs1 register or input signal and Acc accumulator or vice versa;

� OR operates the “or” bitwise of two values (the same types of AND

instruction);

� ADD operates the sum operation of two values (the same types of the above

instruction);

� CONCAT operates the concatenation of two values: rs1 and rs2 input

signals. The operation is correct only if the sum of the two signals bit length

is smaller or equal than the registers bit length;

� SET initializes rs1 with rs2 value: rs1 must be an output signal and rs2

could be an input signal, a register or the accumulator Acc;

� COUNTER is a customized instruction: it manages an embedded

programmable counter. The details of this instruction are described in

paragraph 3.4.3.

The I instructions include the operand address, rs1, which can be a register or a signal,

and a constant, const. They are:

� NOT operates the negation of rs1 value: rs1 can be an input signal, a register

or the accumulator Acc;

� COMPI operates the equality test on rs1 value and const constant: rs1 can be

a register, an input signal or the accumulator Acc;

� COMPNI operates the inequality test on rs1 value and const constant (the

operand rs1 is of the same types of the COMPI instruction);

� SLLR operates the shift logical left of rs1 value of const positive constant

position, if const is a negative value SLLR operates the shift logical right

(the operand rs1 is of the same types of the above instruction); SLLR

substitutes the instructions Shift Logical Left (SLL) and Shift Logical

Right (SRL) to reduce the instruction types number, so maintaining aluOp

field of 4 bit wide without any instruction length modification;

The Microprogrammed Servo Sequencer

26

� STORE saves the result of the previous instruction at the address rs1 (write

back operation): rs1 could be a register or an output signal;

� SET_V initializes rs1 with const value: rs1 must be an output signal;

� WAIT makes the ASIP idle until rs1 assumes the value indicated by const

value. The WAIT instruction has also a particular configuration for the

activation of the Servo Gate control; this operation is described in 3.4.4.

The J instructions are the jump instructions: the immediate field contains the destination

address. They are:

� NOP is a no operation instruction: the immediate field is the iterations

number;

� JUMP is an unconditioned branch: after a JUMP the next instruction to be

executed is at the immediate address in the instruction memory;

� JUMPCS is a conditioned branch that is realized through the series of two

instructions: the first provides the overflow information and the second is

the JUMPCS (Figure 3.4.5). The ADD, COMPI and COMPNI instructions

provide the overflow information by means of the ovf signal. The Jump

operation is executed only if the ovf signal, generated by the instruction

associated, is at ‘10’. This kind of approach allows JUMPCS to be combined

with different kind of test: not only an equal test (COMPI and COMPNI),

but also, for example, an add overflow test (ADD). The JUMPCS instruction

is explained in details in 3.4.2.

 COMPI rs1 rs2

JUMPCS imm

Figure 3.4.5 JUMPCS example

The effect of each instruction may be memorized through STORE operation that

substitutes the write back phase typical of commercial microcontrollers. This causes an

overhead latency that it is accepted because few firmware instructions need the write back

process for this specific application.

3.4.1 Signal Mapping

The signal mapping provides a correspondence between each firmware label and one or

more signals. Each label represents the port address and mask information of the respec-

tive signal. When the MSS has to execute an instruction containing a signal label ope-

rand (a firmware label), the RU extracts the correct signal label value masking the port at

which the signal/signals is/are connected (Figure 3.4.6). The complex mechanism of sig-

nal mapping has been introduced for two reasons:

• Flexibility: it may be that in different firmware versions related to different

Servo systems some signal label may change their dimension or significance.

Signal mapping provides a way to have different interpretations of signals la-

27

bels with a complete disconnection between signals connected to ports and sig-

nals labels in firmware. In Figure 3.4.6 sig_a label has different interpretations

in each Servo firmware versions.

• Power consumption reduction: the signal mapping mechanism lead to consider

only significant information that are necessary for a particular Servo system,

not all signals connected to ports. So the ALU operations are executed on li-

mited values, only the necessary ones (Figure 3.4.6).

MSS

Sig_a = in_b
Sig_a =

in_b & in_c

MSS

Figure 3.4.6 Signal Mapping mechanism example

000001000001
Port_1

mask

MSS

45 10
0000 0101 0101

& = 0000 0000 0010

Figure 3.4.7 Signal Mapping instruction execution example

The Microprogrammed Servo Sequencer

28

When the Microprogrammed Servo Sequencer has to execute an instruction containing a

signal operand, the Register Unit:

1. extracts from data memory the signal port and mask;

2. applies the signal mask to the correspondent port value;

3. send the obtained value with the signal mask to the ALU.

Then the ALU executes the operations described in the RSS ISA. In Figure 3.4.7 an ex-

ample is shown: the RU executes an ADD instruction with register reg_b and signal sig_a

operand. Sig_a value is obtained masking the port number one.

3.4.2 JUMPCS instruction

The JUMPCS is part of a conditioned branch that is realized through the sequence of two

instructions: the first one provides the overflow information and the second is the

JUMPCS. The Jump operation is executed only if the ovf signal, generated by the asso-

ciated instruction, is ‘10’: (‘00’ indicates no information, the ASIP waits; ‘01’ stays for

false, the Jump is not executed). This kind of approach allows JUMPCS to be combined

with different kind of test: not only have an equal test like COMPI and COMPNI, but al-

so, for example, an add overflow test (ADD) and the Servo Gate control (WAIT SG 0).

Due to the two microcontroller pipeline stages, one RAM dual port register memory la-

tency and one extra clock cycle latency for reading instruction in the instruction

Figure 3.4.8 JUMPCS execution

29

memory it isn’t possible to collect from instruction memory the correct instruction that

has to be executed after JUMPCS without delay. To achieve a better performance the pre-

fetch technique has been introduced: the instruction corresponding to the jump destination

is anyway read from the instruction memory during the first cycle of the JUMPCS fetch;

in the second clock cycle the jump destination is memorized in a register, while the in-

struction following JUMPCS in the firmware code is read. In the third clock cycle the

correct one, chosen between the two prefetched instructions, is executed. This technique

allows the reduction of the JUMPCS latency from 3 to 2 clock cycles. Since the MSS

ASIP requires many JUMPCS in the firmware, the latency reduction cuts down signifi-

cantly the total firmware execution time.

In Figure 3.4.8 it is shown an example of JUMPCS execution where the ovf signal is gen-

erated by a COMPI instruction. This signal is ready after 2 clock cycles after JUMPCS

decoding and during COMPI execution.

3.4.3 Generic Counter

COUNTER instruction manages the programmable counter CNT. In Figure 3.4.9 it is

shown the COUNTER configuration for CNT initialization: COUNTER CNT reg1 sets

generic counter to reg1 value, whereas instruction COUNTER CNT 126 starts the decre-

ment of the counter with end_CNT signal value announcing the end of this operation.

COUNTER is a background operation: the firmware execution continues with the instruc-

tions following COUNTER. The end of the counter decrement must be verified with a

WAIT instruction on the end_CNT signal.

Figure 3.4.9 COUNTER instruction

3.4.4 Servo Gate control

The WAIT instruction has a particular configuration for the activation of the Servo Gate

control: if the first field, sig1, assumes the special value (SG), a dedicated address is gen-

The Microprogrammed Servo Sequencer

30

erated to recognize the Servo Gate control operation. The Servo Gate is an input enable

signal whose value must be periodically verified to correctly activate or terminate the

Servo operations: a custom logic, designed to achieve better performance, is activated to

perform this operation through the WAIT instruction. In Figure 3.4.10 the Servo Gate

WAIT configuration is shown: the WAIT SG 0 instruction activates the Servo Gate con-

trol and the associated JUMPCS instruction waits for the positive or negative conclusion

of this operation. If this control has no success the firmware execution jumps to fail-

ure_state.

Figure 3.4.10 Servo Gate WAIT

3.4.5 Embedded counters

The MINIWEDGE, PRBL, RRO1 and RRO2 counters are fixed module embedded

counters that communicates with the MSS by means of internal embedded signals. These

four counters cannot be described by means of the other generic counter instruction

because their activations involve too much input signals, so the generic counter approach

would have penalized MSS performances.

3.5 Reprogramming process

The Reprogramming process achieves the MSS behavior modification to fit different

market Segment Servo Sequencer characteristic. This process is executed only during

Figure 3.5.1 Reprogramming Finite State Machine

31

each Hard Disk Drive system bootstrap: Regular Servo Sequencer industrial implementa-

tion has to be initialized by means of configuration information contained in a memory on

hard disk drive channel chip board; in this memory can be loaded also the firmware data

to allow the Microprogrammed Servo Sequencer reprogramming.

The reprogramming process has been implemented by means of a Finite State Ma-

chine (Figure 3.5.1) that monitors the Microprogrammed Servo Sequencer states. This

process (Figure 3.5.2) is based on an object code file, the Machine Code (MC), to be read

during this phase. The MC contains information about signal mapping, register memory

and instruction memory and it is generated by a custom assembler written in C language.

Figure 3.5.2 Reprogramming process

The firmware, an assembly program, is written by the Servo designer and it is based on

the MSS ISA. The firmware consists of three sections (Figure 3.5.3 and Figure 3.5.4):

1. Initialization of registers: the registers are initialized with an hexadecimal

value and a label is associated to each of them;

2. Initialization of signals: it is defined each signal mapping by associating to

the signal label its port and mask;

3. Program: it describes the behavior of the microcontroller, in particular the

part of the firmware code showing the sequence of operations that must be

executed using the instructions available from MSS ISA. In this part of the

assembly code it is possible to refer to registers and signals using the labels

associated to them during previous initializations. Other labels may be

used for some code lines, so these labels may be used for jump instructions

for example.

The Microprogrammed Servo Sequencer

32

Registers

instructions

Firmware

#

SPN_PGR_MIN 006

…

SEQR_SG port_1 1

…

SEQR_PGR_SRST port_out_2 32

#

IDLE

AND SPN_PGR_MIN t7

OR Acc SEQR_SG

NOT SPN_PGR_MIN

ADD Acc SEQR_SG

COMPI Acc 0

JUMPCS IDLE

SRL SEQR_SG 9

…

#

Figure 3.5.3 Firmware

#

SPN_PGR_MIN 006

…

SEQR_SG port_1 1

…

SEQR_PGR_SRST port_out_2 32

#

IDLE

AND SPN_PGR_MIN t7

OR Acc SEQR_SG

NOT SPN_PGR_MIN

ADD Acc SEQR_SG

COMPI Acc 0

JUMPCS IDLE

SRL SEQR_SG 9

…

#

1

0

163DB51

…

1

12

317A19

…

2

0

1EF3285

…

Machine CodeFirmware

Figure 3.5.4 MSS Firmware and Machine Code: the MC I expressed in decimal coding

Figure 3.5.5 IDLE reprogramming phase: the MSS is inactive

33

At system startup the MSS is in the idle state (Figure 3.5.5) and the reprogramming

process is triggered from the start control signal.

Figure 3.5.6 shows the Loading Data (LD) state: the register memory is initialized with

register values and signal mapping (ports and masks corresponding to signal labels). The

instruction memory is booted in the Loading Word (LW) state (Figure 3.5.7).

Figure 3.5.6 LD reprogramming phase

Figure 3.5.7 LW reprogramming phase

Figure 3.5.8 RN reprogramming phase: firmware execution

The Microprogrammed Servo Sequencer

34

In the RuNning (RN) state the Microprogrammed Servo sequencer executes the firmware

that describes the behavior of the Regular Servo Sequencer (Figure 3.5.8). When a head

focus process is started and a Servo Sector must be read, the MSS is in RN state and ex-

ecutes the firmware; at the end of the elaboration the MSS is set back in idle state until

the next head focus process.

35

3.6 Bibliography

[3.1] D.A. Patterson, and J. Hennessy, “Computer Organization and Design”, Mor-
gan Kaufmann Publishers Inc. San Francisco, CA, USA, 2004.

[3.2] P. Baldrighi, M.M. Maggi, M. Castellano, C. Vacchi, D. Crespi, P. Bonifaci-

no, “Implementation of Microprogrammed Hard Disk Drive Servo Sequenc-
er”, Proc. 2008 11th EUROMICRO Conference on Digital System Design Ar-

chitectures, Methods and Tools, IEEE, pp. 442 – 446, Sep. 2008.

36

37

4 The verification process

he CMOS scaling down process has generated multi-million

gate ASICs with necessary circuit complexity increasing. In

the last few years SOCs and SOPs, which consist of a complex

system composed of different blocks such as elaboration cores,

memories, communication modules integrated in a single chip, are

often adopted. These systems have better performances and reduced

chip area than simpler ASICs, but the main disadvantage is the com-

plexity of these systems: during RTL design the number of function-

al bugs increases exponentially with system complexity, so the

process of verification becomes essential to reduce bugs number be-

fore the manufacturing process.

T

The verification process

38

4.1 The importance of verification

In Figure 4.1.1 the digital Design and Manufacturing flow has been shown. The first

phase consist of chip specs definition; starting from design specs the RTL description is

generated; after a first verification process the Synthesis of RTL creates the netlist ready

for the prototype phase; another verification process to check RTL source code and netlist

correspondence is needed before realizing prototype; the prototype must be tested to con-

trol chip features correctness; if the test is successful the manufacturing process goes on

and product chips are realized; before selling them a final test is needed for rejecting

those that don’t work. Every verification process is needed for the bugs elimination. If the

bugs are resolved before prototype phase chip cost doesn’t grow too much, but if some

bugs are found during prototyping or manufacturing chip costs grows exponentially

(Figure 4.1.2). That’s why the verification process is so important. Moreover the increas-

ing complexity of chip leads to an increasing number of functional bugs, so that the veri-

fication process is essential [4.1], [4.2].

Specs

Manufacturing

Prototype

Synthesis

Design

Verification

Verification

Test

Test

Figure 4.1.1 Design and Manufacturing Flow

Figure 4.1.2 Chip cost

During chip design and manufacturing processes it is necessary to consider not only that

specs have to be met, but also three different factors, which can determine the chip suc-

cess or failure [4.3]:

a) Time to market: chip success depends on how much time elapses from chip

specs definition to product availability on market: the longer is this period the

fewer will be chip revenue. In fact it is important that the chip becomes a

39

Figure 4.1.3 Market Window Revenue

Figure 4.1.4 Market Window cumulative revenue

Figure 4.1.5 Loss of Revenue due to Delay to

Market

Figure 4.1.6 Loss of cumulative Revenue due to delay to

market

product during the Market Window, a temporal window in which there is this

product demand (Figure 4.1.3 and Figure 4.1.4). If the product delay to Market

increases, the sales decrease a lot causing fewer revenue (Figure 4.1.5 and Fig-

ure 4.1.6). The verification process is able to find more quickly design bugs for

the Delay to Market reduction.

b) Costs: the most important focus for a microelectronic society is to have the

highest revenue by means of reducing design and manufacturing costs. With

the CMOS scaling down process for the realization of integrated circuit the

transistor dimension reduction allows to integrate more transistors in one chip

increasing chip density. This phenomenon leads to the chip cost reduction con-

sidering product high volume, but the scaling down process causes also an in-

creasing of masks cost for the integrated circuit manufacturing. If some bugs

are found during chip test process, they have to be resolved, making necessary

modifications, doing a review of the entire circuit with chip respin. In the last

years respins due to functional bugs are increased (Figure 4.1.7). This aspect

together to the increasing masks cost lead to the necessary verification process

introduction and improvement. The goal of the verification process is to reverse

The verification process

40

39%
38%

17%

6%

33%

39%

20%

8%

28%

42%

21%

6%

1% 1% 2%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 2 3 4 5 6 >=7

D
e

si
g

n
s

Spins

Respins due to functional bugs

2002

2004

2008

Figure 4.1.7 Respins due to functional bugs [4.4]

chip respins tendency resolving functional bugs before prototyping and manu-

facturing processes reducing Non-Recurring Engineering (NRE).

a) Quality: it is important to realize bug free chips. The bug not free chips diffu-

sion in the market could cause other than a loss of customer satisfaction also a

warranty cost increasing. In the worst cases this bug not free chips lead to the

damage of the corporate image till customers loss.

In the last years Design for Verification has became an important aspect of the entire

process of Design, Prototype and Manufacturing: a designer may think about verification

during circuit design to facilitate the verification process increasing the probability of

finding more functional bugs in the first phase.

The functional verification controls design correctness before its manufacturing. Relating

to digital circuits this kind of verification consists of two technology kinds:

• Static technology: generally it is called formal verification. It consists of ana-

lyzing RTL code to find bugs such as, for example, unreachable lines of code.

It controls the syntactical aspect of RTL source code.

• Dynamic technology: it is called simulation-based or emulation-based verifica-

tion. This kind of approach requires not only the source code, but also the test-

bench, that is an example of a possible environment in which the design will

work. This verification phase is not automatic: it is necessary to build the entire

testbench and the checkers for verifying design correctness.

41

The process of verification is necessary not only for masks cost saving, but also for the

efficiency in findings bugs sources.

Functional verification uses three approaches:

- Black-box approach: in this case the design is treated as a black box. It com-

municates with verification environment only with input and output pins. So in-

itializing input pins only output pins, that are very few considering all chip sig-

nals, can be controlled (Figure 4.1.8). In case of bugs it is very difficult, almost

impossible in today’s large designs, to locate the sources of the problems. The

unique advantage is that this kind of approach does not depend on implementa-

tion.

Figure 4.1.8 Black Box approach

- White-Box approach: the design is full observable and controllable, so that in-

ternal signals, structure and implementation are visible (Figure 4.1.9). In case

of bugs found the problems sources are easily located. The disadvantage of this

approach is that any changes in design implementation cause the verification

environment modification. It is useful to verify low level implementation spe-

cific features. Assertions in RTL code are ideal for this purpose.

Figure 4.1.9 White Box approach

The verification process

42

- Grey-Box approach: some non-functional modification, such as additional reg-

isters to control internal states, are added to the design to improve controllabili-

ty.

In today’s large designs the increasing complexity of the circuit lead to a more important

verification process able to find greater number of functional bugs so that only white-box

and grey-box approach can be used.

The verification process is different from test process (Figure 4.1.10): the first has to find

functional bugs in the design; the second is necessary to assure that the product chip cor-

responds perfectly to the netlist and chip mass manufacturing has a good yield. The in-

creasing verification importance lead to an increasing attention on the verification instru-

ment.

Figure 4.1.10 Verification and test processes

4.2 Assertion based verification

The Dynamic functional verification is based on the Design Under Verification (DUV)

behavior control during simulation and emulation. The increasing complexity of today’s

circuit makes impossible the brute force approach: to stimulate input with all combina-

tions of values verifying all signals behaviors correctness. So that a design is verified with

a subset of chip functioning situations.

The ABV is based on assertions, that are particular lines of code inserted in RTL source

code. They can describe both low level design functionality (Implementation assertions)

both high level characteristic (Specification assertions). The assertions have been used for

decades in software implementation, and in the last decade they are being used also in

hardware design. This phenomena is due to the simple use of the assertion: it is possible

to insert them in the code both during the first design phase both during the last design

phase without any changes in RTL source code. The assertions are considered as com-

ments in the netlist generation process so that there isn’t any non functionality feature

added to silicon. Both designers and verification engineers can use assertions. Generally

assertions are inserted gradually to the source code: they are created with new design

functionality. There aren’t limitations in assertions number: complex designs may have

hundreds or thousands of assertions.

A great advantage of assertions use is their reusability characteristic: in every design, pro-

totype and manufacturing phases they can be inserted without any modification (Figure

43

4.2.1). They can be used both in verification both in testing process to check that design

behavior corresponds to design specs.

Figure 4.2.1 Design and manufacturing process whit assertion checkers

There are more advantages in assertion use in design process. The first is the design ob-

servability increasing: in a classic verification environment a stimuli generator testbench

is created; it is applied to the Design Under Verification and then a receiver checks the

output to find errors. During simulation to identify a bug by means of a testbench is ne-

cessary to generate opportune stimuli for design input so that the bug is stimulated (con-

trollability) and also propagated to design output (observability), see Figure 4.2.2. In

some cases it is possible that some bugs are not propagated to output pins causing a lack

of verification information (false negative): in Figure 4.2.2 the checker finds only the bug

that is propagated to output pin.

Figure 4.2.2 Not ABV approach

The verification process

44

To increment the probability of findings bugs and locate their sources, the easiest way is

to move the checkers nearest to the sources: if the checkers are located near bugs sources

problems are immediately pointed out (Figure 4.2.3). In this case it is necessary only to

care about controllability (input stimuli) so that the bugs are pointed out. Not only it is

easier to find bugs, but also assertions add more information about the time the bugs oc-

cur and their locations in the source code. Without assertions the testbench is not able to

Q

Q
SET

CLR

S

R

&0

0

0

C

h

e

c

k

e

r

controllability

observability

Figure 4.2.3 ABV approach

point out these information, only the stimuli sequence is known, so it is necessary to ana-

lyze the source code starting from output pins to reach bugs sources. In today’s complex

designs this kind of analysis is quite difficult: the design process includes a lot of persons

and it may take a lot of time to find bug.

The Specification assertions can be used to check device interfaces. If during the first

phase of design there are some discrepancies, the designer notices immediately this com-

munication problem and he/she can resolve it quickly.

The assertions are used both at block level verification both at system level. In the last

process there isn’t any checkers for each specific block that compose system, but asser-

tions in code continue to control each block behavior.

Assertion Based Verification is an important phase in design process. In literature there

are two assertion language: PSL (Property Specification Language) [4.5] and SVA (Sys-

tem Verilog Assertion) [4.6], [4.7]. Both are IEEE standards with different origins, but

they have similar characteristic. For Microprogrammed Servo Sequencer verification PSL

assertion (Appendix 9.1) are used.

4.3 Critical operations

Due to the complexity of Microprogrammed Servo Sequencer Assertion Based Verifica-

tion has been orientated to the more complex MSS functionality. The resulting critical

operations are instructions that cause the out-of-order execution of firmware: JUMP,

branch uncoditioned; JUMPCS, branch conditioned; NOP, no operation (idle condition);

45

WAIT, idle condition till a signal value change. Another critical feature of MSS is the

Signal Mapping: it must be checked that the MSS reads the exact value for each signal.

All these features involve Instruction Memory and Register Unit. In paragraph 4.3.1 will

be explained the assertion based verification of JUMPCS instruction as example.

4.3.1 JUMPCS

In paragraph 3.4.2 JUMPCS behavior has been explained, but it is necessary to analyze in

details this instruction to explain PSL assertion verification applied to it. When a

JUMPCS is executed, during the following two clock cycles the branch instruction (Instr

N in Figure 4.3.1) and the not branch instruction (Instr X in Figure 4.3.1) are collected

from Instruction Memory so that when the overflow signal (the JUMPCS result) is stable

the correct instruction is immediately ready for execution (prefetch technique).

Figure 4.3.1 JUMPCS execution

The firmware example with JUMPCS instruction shown in Figure 4.3.2 is used to explain

this instruction in detail: the Instruction Memory signals that are involved in JUMPCS

operations are shown in Figure 4.3.3 and Figure 4.3.4. The first shows the JUMPCS

branch not execution: instrAddr signal is the address information provided by Program

Counter; mem_Addr signal is the effective address of the instruction collected from In-

struction Memory, this value may be equal or different to instrAddr in case of out-of-

order instructions execution; data_out signal is the instruction collected from IM, it may

be that this instruction will not go on execution; instr indicates the instruction that must

The verification process

46

Figure 4.3.2 Firmware example with JUMPCS instruction

Figure 4.3.3 JUMPCS branch not execution signals evolution

Figure 4.3.4 JUMPCS branch execution signals evolution

be executed; the overflow signal is the result of JUMPCS operation; addr_vs_pc and

instr_vs_pc are control signals to update Program Counter configuration.

 It is supposed that JUMPCS cannot be repeated two times sequentially (JUMPCS is al-

ways associated to the previous instruction). The PSL assertion verification has been rea-

lized by means of three different assertions associated to three different properties:

- p_jumpcs verifies that when a JUMPCS instruction is in execution in the fol-

lowing clock cycle the instruction in execution is again a JUMPCS, in the next

…

21

22

23

24

…

36

37

…

…

Instr 21

JUMPCS 36

Instr 23

Instr 24

…

Instr 36

Instr 367

…

47

clock cycle the overflow signal must be at ‘01’(branch not executed) or ‘10’

(branch executed). There is an exception to this behavior if the instruction be-

fore a JUMPCS is a WAIT SEQR_SG 0.

The previous property must be verified independently on the JUMPCS result. The follow-

ing two PSL sequences are introduced to support the other two properties. They describe

JUMPCS behavior in two different cases:

- branch not execution

- branch execution

The following PSL property controls that the branch is executed correctly in respect to the

overflow value.

-- psl Property p_jumpcs_no is

 -- always s_jumpcs_no |->

 -- (instr= data_out

 -- or (data_out = WAIT_126_0

 -- and instr = NOP_0))

 -- and ((next(mem_addr, prev(mem_addr,1), nInstr))

 -- or (((instr(li-1 downto li-lc) = "1010")

 -- and (mem_addr = instr(li-lc-4 downto li-lc-limm_j)))))

 -- and instr_vs_pc = 4

 -- and next(prev(mem_addr,1), prev(mem_addr,3), nInstr)

 -- and ((addr_vs_pc = mem_addr+1)

 -- or (addr_vs_pc = mem_addr

 -- and instr(li-1 downto li-lc) = "1011"

 -- and not(instr(li-lc-4 downto li-lc-limm_j)=2)

 -- and not (instr(li-lc-4 downto li-lc-limm_j)=1)));

 -- psl Assert p_jumpcs_no Severity ERROR;

-- psl Sequence s_jumpcs_ok is

 -- {instr(li-1 downto li-lc)="0110"[*2]; overflow = “10”};

-- psl Sequence s_jumpcs_no is

 -- {instr(li-1 downto li-lc)="0110"[*2]; overflow = “01”};

-- psl Property p_jumpcs is

 -- always {not(instr = NOP0);

 -- rose(instr(li-1 downto li-lc)="0110")} |=>

 -- {stable(instr); (overflow = “01”) or (overflow = “10”)};

-- psl Assert p_jumpcs Severity ERROR;

The verification process

48

So the p_jumpcs_no verifies that when there is a JUMPCS and the related upcoming

overflow is ‘01’:

- the next instruction to be executed is data_out, the output of Instruction Memo-

ry [blue];

- the next instruction to be read is subsequent to the present instruction (if the

present instruction is JUMP the next instruction must be collected at immediate

address from Memory) [red];

- the present instruction address, mem_addr, is subsequent to JUMPCS ad-

dress [green];

- instr_vs_pc must assume the value ‘4’ for the correct configuration of Program

Counter [violet];

- addr_vs_pc must assume mem_addr value incremented of 1 (except in case of

NOP k instruction, when k is different from 1 and 2) [yellow].

The firmware used for JUMPCS branch not execution verification is shown in Figure

4.3.5 and the related PSL assertions verification is shown in Figure 4.3.6.

Figure 4.3.5 Firmware used for JUMPCS branch not execution verification

CLK

7 8 9 10

Instr 6 JUMPCS 29

01

Instr 8

6

Instr 9

7 86 109

Instr 6 Instr 8 Instr 9JUMPCS 29

8 29

Instr 29

instrAddr

mem_Addr

data_out

instr

overflow

addr_vs_pc

instr_vs_pc

00

0

4

11

11

00

0

0

next next

+ 1 =

= 4

20

10

Figure 4.3.6 PSL assertion verification in case of JUMPCS branch not execution

…

6

7

8

9

…

29

…

…

Instr 6

JUMPCS 29

Instr 8

Instr 9

…

Instr 29

…

49

In case of JUMPCS with branch not execution with JUMP as subsequent instruction PSL

assertion verifies some different features: the firmware used for this verification case is

shown in Figure 4.3.7 and the related PSL assertions verification is shown in Figure 4.3.8.

Figure 4.3.7 Firmware used for JUMPCS branch not execution with a subsequent JUMP verification

CLK

7 8 41

Instr 6 JUMPCS 29

01

JUMP 40

6

Instr 40

7 86 419

Instr 6 JUMP 40 Instr 40JUMPCS 29

8 29

Instr 29

10 41

instrAddr

mem_Addr

data_out

instr

overflow

addr_vs_pc

instr_vs_pc

00

0

4

42

42

00

0

0

next

+ 1 =

= 4

9 40

=

JUMP

20

Figure 4.3.8 PSL assertion verification in case of JUMPCS branch not execution with a subsequent JUMP

In case of JUMPCS with branch not execution with NOP as subsequent instruction PSL

assertion verifies some different features (Figure 4.3.9 and Figure 4.3.10).

Figure 4.3.9 Firmware used for JUMPCS branch not execution with a subsequent NOP verification

…

6

7

8

9

…

29

…

…

Instr 6

JUMPCS 29

NOP 3

Instr 9

…

Instr 29

…

…

6

7

8

…

29

…

40

…

…

Instr 6

JUMPCS 29

JUMP 40

…

Instr 29

…

Instr 40

…

The verification process

50

CLK

7 8 9

Instr 6 JUMPCS 29

01

NOP 3

6

7 86 9

Instr 6 NOP 3JUMPCS 29

8 29

Instr 29

instrAddr

mem_Addr

data_out

instr

overflow

addr_vs_pc

instr_vs_pc

00

0

4

00

0

next next

= =

= 4

20

NOP

≠ 1 e ≠ 2

Instr 9

1 0

10 9

Figure 4.3.10 PSL assertion verification in case of JUMPCS branch not execution with a subsequent NOP

The following PSL assertion checks the correct behavior of JUMPCS in case of branch

execution.

The characteristics to be verified are:

- the instruction to execute is data_out, the output of Memory, at the previous

clock cycles [blue];

-- psl Property p_jumpcs_ok is

 -- always s_jumpcs_ok |->

 -- (instr= prev(data_out)

 -- or (prev(data_out) = WAIT_126_0

 -- and instr = NOP_0))

 -- and (next(mem_addr, prev(mem_addr,2), nInstr)

 -- or (((instr(li-1 downto li-lc) = "1010")

 -- and (mem_addr = instr(li-lc-4 downto li-lc-limm_j)))))

 -- and (prev(mem_addr,2) = prev(data_out(li-lc-4 downto li-lc-limm_j), 2))

 -- and instr_vs_pc = 4

 -- and ((addr_vs_pc = mem_addr+1)

 -- or ((instr(li-1 downto li-lc)="1011")

 -- and (addr_vs_pc = mem_addr)

 -- and (not(instr(li-lc-4 downto li-lc-limm_j)=1))

 -- and (not(instr(li-lc-4 downto li-lc-limm_j)=2))));

-- psl Assert p_jumpcs_ok Severity ERROR;

51

- the next instruction to be read is subsequent to the present instruction (except in

case of JUMP as present instruction) [red];

- the present instruction address, mem_addr, is subsequent to JUMPCS imme-

diate field [green];

- instr_vs_pc must assume the value ‘4’ for the correct configuration of Program

Counter [violet];

- addr_vs_pc must assume mem_addr value incremented of 1 (except in case of

NOP k instruction, when k is different from 1 and 2) [yellow].

The firmware used for JUMPCS branch execution verification is shown in Figure

4.3.11and the related PSL assertions verification is shown in Figure 4.3.12.

Figure 4.3.11 Firmware used for JUMPCS branch execution verification

CLK

7 8 30 31

Instr 6 JUMPCS 29

10

Instr 8

6

Instr 30

7 86 319

Instr 6 Instr 29 Instr 30JUMPCS 29

8 29

Instr 29

instrAddr

mem_Addr

data_out

instr

overflow

addr_vs_pc

instr_vs_pc

00

0

4

32

32

00

0

0

=

next

+ 1=

= 4

20

31

Figure 4.3.12 PSL assertion verification in case of JUMPCS branch execution

…

6

7

8

…

29

30

…

…

Instr 6

JUMPCS 29

Instr 8

…

Instr 29

Instr 30

…

The verification process

52

In case of JUMPCS with branch execution with JUMP as subsequent instruction PSL as-

sertion verifies some different features (Figure 4.3.13 and Figure 4.3.14).

Figure 4.3.13 Firmware used for JUMPCS branch execution with a subsequent JUMP verification

Figure 4.3.14 PSL assertion verification in case of JUMPCS branch execution with a subsequent JUMP

In case of JUMPCS with branch execution with NOP as subsequent instruction PSL as-

sertion verifies some different features (Figure 4.3.15 and Figure 4.3.16).

Figure 4.3.15 Firmware used for JUMPCS branch execution with a subsequent NOP verification

…

6

7

8

…

29

30

…

…

Instr 6

JUMPCS 29

Instr 8

…

NOP 3

Instr 30

…

…

6

7

8

…

29

…

45

…

Instr 6

JUMPCS 29

Instr 8

…

JUMP 45

…

Instr 45

53

CLK

7 8

Instr 6 JUMPCS 29

2

Instr 8

6

7 86 9

Instr 6 NOP 3JUMPCS 29

8 29

NOP 3

instrAddr

mem_Addr

data_out

instr

overflow

addr_vs_pc

instr_vs_pc

0

0

4

0

0

30

=

next

==

= 4

20

NOP

≠ 1 e ≠ 2

Instr 30

1 0

31 30

30

Figure 4.3.16 PSL assertion verification in case of JUMPCS branch execution with a subsequent NOP

4.4 Simulation based verification

After the PSL assertions insertion in the RTL source code the behavior of Micropro-

grammed Servo Sequencer has been verified by means of simulations. At first JUMP,

JUMPCS, NOP and their interactions has been verified. Then WAIT and WAIT

SEQR_SG, that depends on input signals values, has been verified. For these instructions

not only firmware, but also input signals values have been changed. At last Signal Map-

ping has been verified.

So there are three different verification phases:

� JUMP, JUMPCS and NOP verification: different versions of firmware have

been written to check all the possible situations that may cause uncorrected be-

haviors. In Table 4.4.1 the firmwares used contain some registers labels: reg0,

reg1 and reg2. The verification process consists of a simulation with these

firmwares to point out uncorrected behaviors. The previous firmwares test each

Table 4.4.1 Firmwares for simulation based verifications of JUMP, NOP and JUMPCS instructions

JUMP JUMPCS NOP

A:
 NOT reg2
 JUMP C
B:
 NOT reg1
 JUMP A
C:
 NOT reg0
 JUMP B

 SET_V reg0, 0
A:
 COMPI reg0, 0
 JUMPCS C
B:
 NOT reg1
C:
 COMPNI reg0, 0
 JUMPCS B

 NOP 1
 NOT reg0
 NOP 2
 NOT reg1
 NOP 3
 NOT reg2
 NOP 27
 NOT reg0
 NOP 1023
 NOT reg1

The verification process

54

instruction alone, but it is necessary to check also interactions between them; so

in Table 4.4.1 an example of some firmwares to test the complex situations of

NOP after JUMPCS instruction are shown.

In Table 4.4.2 the firmwares represent the following situations:

a) NOP 1 after JUMPCS branch taken;

b) NOP 2 after JUMPCS branch taken;

c) NOP 1023 after JUMPCS branch taken;

d) NOP 1 after JUMPCS branch not taken;

e) NOP 2 after JUMPCS branch not taken;

f) NOP 1023 after JUMPCS branch not taken;

Table 4.4.2 Firmwares for simulation based verifications of NOP
and JUMPCS instructions possible interactions

a)
 STORE
 reg0, 1
 COMPI reg0, 1
 JUMPCS A
 NOT reg1
A:
 NOP 1
 AND reg0, reg1

b)
 STORE
 reg0, 1
 COMPI reg0, 1
 JUMPCS B
 NOT reg1
B:
 NOP 2
 AND reg0, reg1

c)
 STORE
 reg0, 1
 COMPI reg0, 1
 JUMPCS C
 NOT reg1
C:
 NOP 1023
 AND reg0, reg1

d)
 STORE
 reg0, 1
 COMPI reg0, 0
 JUMPCS C
 NOP 1
D:
 AND reg0, reg1

e)
 STORE
 reg0, 1
 COMPI reg0, 0
 JUMPCS C
 NOP 2
E:
 AND reg0, reg1

f)
 STORE
 reg0, 1
 COMPI reg0, 0
 JUMPCS C
 NOP 1023
F:
 AND reg0, reg1

� For WAIT and WAIT SEQR_SG the test bench has been modified to change

input signals values because these instructions depends on these ones. Some

firmwares are written to analyze both single instruction behavior both all possi-

ble interactions with other out-of-order instructions.

� For Signal Mapping verification two different firmwares are realized: in the

first all instructions that may use signal mapping mechanism have been intro-

duced; in the second all the possible memory locations for Signal Mapping are

allocated, then verified with all the instructions. Not only the correct behavior

of Signal Mapping mechanism has been verified, but also memory reconfigura-

tions.

With this approach all the wrong behaviors have been corrected. For every kind of Mi-

croprogrammed Servo Sequencer needed to fit different Servo application versions the

Assertion Based Verification allows to verify MSS behavior. This kind of approach can

also be applied in the Test phase achieving prototyping verification.

55

4.5 Bibliography

[4.1] Matteo Miotti, “Studio ed implementazione di una metodologia di verifica

funzionale di un’architettura a microcontrollore dedicate”, Tesi di Laurea

Specialistica in Ingegneria Elettronica, Università degli Studi di Pavia, a.a.

2007 – 2008.

[4.2] Janick Bergeon, Writing Testbench using systemverilog, Springer-Verlag,

New York, 2006.

[4.3] Perry D. L., Foster H. D., Formal verification: for digital circuit design,

McGraw-Hill Professional, 2004.

[4.4] Harry Foster, slides “Introduction to verification academy”, Mentor Graphics'

Verification Academy.

[4.5] IEEE Standard 1850 for Property Specification Language (PSL).

[4.6] IEEE Standard 1800 for SystemVerilog— Unified Hardware Design, Specifi-

cation, and Verification Language.

[4.7] System Verilog assertions handbook, Di Ben Cohen, Srinivasan Venkatara-

manan, Ajeetha Kumari

56

57

5 Case study and synthesis results

he Microprogrammed Servo Sequencer is able to emulate dif-

ferent Regular Servo Sequencer state diagrams. A Regular

Servo Sequencer industrial product is used for testing the abil-

ity of MSS. Microprogrammed Servo Sequencer behavior is com-

pared to RSS one. Then the MSS is synthesized in 1.2 V, 65 nm

CMOS technology. MSS synthesis results are compared with RSS

results.

T

Case study and synthesis results

58

5.1 Regular Servo Sequencer Finite State Machine

The Regular Servo Sequencer is a part of an industrial product. It is implemented with a

hardwired synchronous Finite State Machine. At system Start up the RSS FSM is in idle

waiting for a Servo pattern reading or writing. When a Servo pattern is going to be read

the Servo Gate signal is activated: the Regular Servo Sequencer has to orchestrate Servo

operations.

Figure 5.1.1 User, normal servo and miniwedge servo data

In Figure 5.1.2 the Regular Servo Sequencer Finite State Machine is shown:

- IDLE is the start state;

- SVO_SG1 and SVO_SG2 states, activated by the Servo Gate, prepare the

RSS to the Servo pattern decoding process;

- WAIT_INPUT process waits for the first data of normal Servo pattern (it

might be the preamble field);

- PGR_DATA_PRMBL decodes the normal Servo preamble field; if this

field is not found the Servo Gate is closed and all the Servo operations are in-

terrupted by means of CLOSE_SG state;

- if the preamble is decoded correctly the WAIT_SAM_SRCH state waits

for the Servo Address Mark (SAM) field;

- SAM_SRCH decodes preamble field;

- GC_DET decodes the gray code which arrives after the preamble field;

- BRST_DEM decodes the bursts A, B, C and D fields.

The normal Servo pattern might have zero, one or two Repetable Run Out (RRO) fields:

- WAIT_RRO1, PGR_RRO1, DATA_RRO1, WAIT_RRO2, PGR_RRO2,

DATA_RRO2 decode RRO1 and RRO2 fields, if they are present in the Servo

pattern;

- WAIT_INPUT_MWG, PGR_MWEGDE, SAM_MWEGDE and BRST_

MWEGDE states act the Miniwedge Servo pattern (Figure 5.1.1) decoding

process;

59

Figure 5.1.2 Regular Servo Sequencer Finite State Machine Diagram

Case study and synthesis results

60

- DC_ERASE_SRCH, WAIT_DC_PD, WT_SAM_SRCH_SPN, PGR_

SPN_CHK, PRBL_SR_CH manage Servo operations in case of SAM not

found and preamble not found.

Every minimal modifications of this Finite State Machine cause the need of redesign and

verify all the Regular Servo Sequencer FSM. The use of ASIP architecture assures flex-

ibility to the system due to the ability of emulating more Finite State Machines. Thanks to

this feature the redesign and verification of a complex Finite State Machine can be substi-

tuted by simple firmware rewriting [5.1].

5.2 Microprogrammed Servo Sequencer approach

In Figure 5.2.2 the Finite State Machine diagram emulated by Microprogrammed Servo

Sequencer is shown: it’s behavior is the same of Regular Servo Sequencer Finite State

Machine (Figure 5.1.2). This diagram is simply the firmware scheme: each state corres-

ponds to a label, which stands for an instruction address (Figure 5.2.1). In the diagram

some states are added (the grey ones) due to the MSS ASIP nature: an hardwired Finite

State Machine is a parallel hardware (it can take a decision choosing between more than

two future operations at a time, in the diagram more than two future states); a processor,

an Application Specific Processor in this case, is a sequential hardware (it can take a deci-

sion choosing between only two future operations at a time). States insertion is necessary

to maintain the same behavior of the hardwired RSS FSM. The operation of states addi-

tion does not cause any complexity increasing of the ASIP architecture (it is a zero cost

operation) because states are simply labels that are translated by the assembler in instruc-

tion addresses (Figure 5.2.1); instead the same operation for an hardwired FSM causes an

increasing of complexity and area occupation.

Figure 5.2.1 State label correspondence (firmware example)

61

Figure 5.2.2 Finite State Machine diagram emulated by Microprogrammed Servo Sequencer

Case study and synthesis results

62

Figure 5.2.3 Part of MSS FSM

Figure 5.2.4 Firmware example

In Figure 5.2.3 a part of MSS FSM diagram is illustrated [5.2]. The Servo Gate (SG) that

informs about the Servo pattern read process beginning from the media is the Servo oper-

ation enable signal: when it is high the MSS starts Servo operations, when it is low the

MSS is IDLE. In (Figure 5.2.4) there is a part of Microprogrammed Servo Sequencer

firmware which emulates this part of RSS state diagram. In states IDLE and

STATE_ACB_FIR_LATENCY the generic counter that considers the latency of some

Servo system blocks is initialized: it is possible to have different system latencies depend-

ing on servo pattern characteristics.

The complete firmware which emulates the Regular Servo Sequencer Finite State Ma-

chine is shown in the Appendix 9.2.

5.3 Microprogrammed Servo Sequencer dimensioning

The Regular Servo Sequencer characteristics has been studied to identify the correct di-

mensioning of Microprogrammed Servo Sequencer. The programmable ports are 20, 7 bit

wide to match the 100 in/out signals of RSS (in case of signals extension greater than 7

bit CONCAT instruction provides a concatenation mechanism to recover these signals).

Port addressing is 5 bit wide, but port number is 20 to match Servo operations needs re-

ducing so power consumption and area. It is possible to extend port number till 32 in case

of signals number and/or dimension increasing. The MSS Register Memory is

63

4

4

4

7

7

7

14

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

RRR

RRI

J

aluOp

rs1

rs2

immediate

const

Figure 5.3.1 MSS Instruction-set

dimensioned with 128 word of 12 bit: the RSS signals are about 100 and the remaining

memory locations are used for internal registers values; each register is 12 bit wide to

contain also 7 bit signals and to have the possibility to execute some ADD instructions

between two 7 bit signals without any addition overflow. So there is a unique 7 bit ad-

dressing space for signal mapping and registers. With this bit information each instruction

type can be dimensioned (Figure 5.3.1). The R instruction type contains rs1 and rs2 sig-

nals/registers fields; I instruction type contains rs1 signal/register field and immediate

const field; J instruction type contains 14 bit immediate field. For this particular Servo

application 480 firmware instructions are needed so a 9 bit addressing is needed and the

Instruction Memory is dimensioned with 512 word of 18 bit. It is possible to expand this

memory till 16384 words maintaining the same instruction-set.

All the RTL source code that describes the Microprogrammed Servo Sequencer is para-

metric: it is possible to change MSS ISA characteristic to fit different Servo applications.

5.4 Behavioral matching verification

RSS

MSS data and

instructions alreary

initialized

Simulation with PSL Assertion test

PSL test

success

PSL test failure

MSS

RTL correction

MSS data and

instructions alreary

initialized

MSS

MSS data and

instructions alreary

initialized

Simulation with PSL Assertion test

PSL test failurePSL test success

Figure 5.4.1 Behavioral matching verification

Case study and synthesis results

64

The MSS functional simulations have been compared to the RSS on behavioral matching

verification (Figure 5.4.1): at the beginning a MSS with the data and register memories

already initialized has been described; it has been then compared with the MSS with the

Reprogramming FSM through the functional verification simulation-based technique; at

the end the MSS already initialized has been compared with the Regular Servo Sequencer

for the behavioral matching verification. This kind of behavioral verification assures also

the correct loading of data memory and instruction memory: the loading operations are

verified by means of PSL assertions.

5.5 Synthesis results

The MSS has been synthesized in 1.1 V, 65 nm CMOS technology with three types of

transistors: High Voltage Threshold (HVT), Standard Voltage Threshold (SVT) and Low

Voltage Threshold (LVT). The Instruction Memory makes use of an Intellectual Property

(IP) single port RAM with 512 words and 18 word bits in 1.2 V, 65 nm CMOS technolo-

gy with SVT transistor: in Figure 5.5.1 IP memory symbol is shown; in Table 5.5.1, Table

5.5.2, Table 5.5.3, Table 5.5.4 the main characteristics of this memory are indicated. Sin-

gle port memory with process worst, 1.1 V and temperature 125°C is considered to obtain

Microprogrammed Servo Sequencer area and slack synthesis results, whereas Single port

memory with process best, 1.3 V and temperature 125°C to obtain dynamic and leakage

power synthesis results.

Figure 5.5.1 RAM single port symbol

Table 5.5.1 RAM single port primary parameters

Primary Parameters

Parameter Value

Number of words 512

Number of bits 18

Number of multiplexer inputs 8

Driving capability 35

Transistor Standard

Redundancy No

Bit Mask no

Debug Mode Not Available

Pipeline no

Zero Hold Time Yes

65

Table 5.5.2 RAM single port pin description

Pin Description

Pin Name Pin Function

CK External clock input for the memory.

CSN
Chip Select pin. When this input is logic low, memory is enabled and
read/write operations can be performed.

WEN
Write Enable pin. When this input is logic low, memory is in the write
mode.

A[8:0]
Address Input. The Address input is used to address the location to be read
during the read cycle and written during the write cycle.

D[0:17]
Data Input bus. This is used to write data to the memory location specified
by the Address Input port during the write cycle.

TBYPASS

Memory Bypass in Test Mode. It is used for data path checking. This signal
is not dependent on clock. Therefore, no setup or hold time is required.
Whenever this signal is active, the output bus (Q) gets the value of the input
bus (D) in a specified time delay. This pin is managed by BIST.

Q[0:17]
Data output bus. Generates the contents of the memory location addressed
by the Address Input signals. Q is always buffered.

RY Memory Handshake signal.

Table 5.5.3 RAM single port derived parameter

Derived Parameters

Parameter Value

Number of rows (rows) 64 words/mux

Number of columns (cols) 144 bits*mux

Aspect ratio 0.444 rows/cols

Capacity 9216 words*bits

Table 5.5.4 RAM single port physical parameter

Physical Parameters

Parameter Value

Width 187.2 um

Height 64.0 um

Area 11980.8 um2

Case study and synthesis results

66

The Register Unit has been implemented by means of an IP dual port RAM with 128

words and 12 word bits in 1.2 V, 65 nm CMOS process technology with SVT transistor:

Figure 5.5.2 RAM dual port symbol

in Figure 5.5.2 IP memory symbol is shown; in Table 5.5.5, Table 5.5.6, Table 5.5.7, Ta-

ble 5.5.8 the main characteristics of this memory are indicated. Dual port memory with

process worst, 1.1 V and temperature 125°C is considered to obtain MSS area and slack

synthesis results, whereas dual port memory with process best, 1.3V and temperature

125°C to obtain dynamic and leakage power synthesis results.

Table 5.5.5 RAM dual port primary parameters

Primary Parameters

Parameter Value

Number of words 128

Number of bits 12

Number of multiplexer inputs 8

Driving capability 35

Transistor Standard

Redundancy No

Bit Mask no

Write Test Mode Available

Pipeline no

Zero Hold Time Yes

67

Table 5.5.6 RAM dual port pin description

Pin Description

Pin Name Pin Function

CK1,2 External clock input for the memory.

CSN1,2
Chip Select pin. When this input is logic low, memory is enabled and

read/write operations can be performed.

WEN1,2 Write Enable pin. When this input is logic low, memory is in the write
mode.

A1,2[0:6]
Address Input. The Address input is used to address the location to be
read during the read cycle and written during the write cycle.

D1,2[0:11]
Data Input bus. This is used to write data to the memory location speci-
fied by the Address Input port during the write cycle.

SELCK
Clock select Mux. This will select either of the two clocks i.e. When this
input is logic low, Functional clock 'CK' is selected and when this input is
logic high, BIST clock 'MTCK' is selected.

MTCK1,2 BIST clock. This will be active in test mode of memory.

TP1,2
Write Test Mode to enable special BIST test mode. This mode emulates
the worst write clock skew condition and it is mandatory for Low Lea-
kage option.

TBYPASS1,2

Memory Bypass in Test Mode. It is used for data path checking. This
signal is not dependent on clock. Therefore, no setup or hold time is re-
quired. Whenever this signal is active, the output bus (Q) gets the value
of the input bus (D) in a specified time delay. This pin is managed by
BIST.

Q1,2[0:11]
Data output bus. Generates the contents of the memory location ad-
dressed by the Address Input signals. Q is always buffered.

RY1,2 Memory Handshake signal.

Table 5.5.7 RAM dual port physical parameter

Physical Parameters

Parameter Value

Width 247.2 um

Height 44.8 um

Area 11074.56 um2

Table 5.5.8 RAM dual port derived parameter

Derived Parameters

Parameter Value

Number of rows (rows) 16 words/mux

Number of columns (cols) 96 bits*mux

Aspect ratio 0.167 rows/cols

Capacity 1536 words*bits

Case study and synthesis results

68

The synthesis process has been realized through Synopsys Design Compiler® at 300

MHz, the elaborating frequency of the actual Regular Servo Sequencer, with 1.1 V, 65

nm, process worst CMOS technology. The dynamic power dissipation and leakage have

been simulated onto the Standard Cell implementation of Microprogrammed Servo Se-

quencer in a 65 nm CMOS technology at 1.3V process best, getting in this way the power

dissipation worst case.

Microprogrammed Servo Sequencer area and timing outputs have been compared to RSS

synthesis ones. The main results have been summarized in Table 5.5.9. The MSS is nine

times bigger than RSS, the dynamic power dissipation is about two times higher whereas

the leakage is approximately six times higher but, being MSS programmable, it is possi-

ble to change its behavior.

Table 5.5.9 Synthesis results

Device Library

SYNTHESIS RESULTS

Area

[µm
2
]

Dynamic power

[mW]

Leakage Power

[µW]

RSS
HVT, SVT, LVT

65nm
4,2 x 103 1,4 232

MSS (5.3)
HVT, SVT, LVT

65 nm
36,7 x 103 3.24 1234

In Table 5.5.10 Synthesis results details are shown: the combinational area is about 26 %

of the MSS total area, the non combinational area is about the 12 % of MSS area and

black boxes area (Intellectual Property single port RAM and dual port RAM) is about the

63 % of the MSS total area. Microprogrammed Servo Sequencer area and timing outputs

have been compared to RSS synthesis ones.

Table 5.5.10 Synthesis results details

Global Cell Area Local Cell Area

Absolute

Total

[µm
2
]

%
Combinational

[µm
2
]

%

Non

combinational

[µm
2
]

%

Black

boxes

[µm
2
]

%

36770 100 9390 ~25 4326 ~12 23055 ~63

In case of longer firmware it is possible to extend the RAM single port from 512 to 16384

words with few changing in the RTL code. For this particular Servo application 380

firmware instructions are needed. However the Microprogrammed Servo Sequencer is pa-

rametric, so it is possible to reduce or to extend every instruction or register fields with

simple RTL code changes.

69

5.6 Bibliography

[5.1] Zhenyu Liu, Tughrul Arslan, Sami Khawam, Iain-Lindsay, “A High Perfor-

mance Synthesisable UnsymmetricaI Reconfigurable Fabric For Heterogene-

ous Finite State Machines”, Proc. of the 2005 Design Automation Conference

Asia and South Pacific, IEEE, pp. 639 – 644, Vol. 1, Jan. 2005.

[5.2] P. Baldrighi, M.M. Maggi, M. Castellano, C. Vacchi, D. Crespi, P. Bonifaci-

no, “Implementation of Microprogrammed Hard Disk Drive Servo Sequenc-

er”, Proc. 2008 11th EUROMICRO Conference on Digital System Design Ar-

chitectures, Methods and Tools, IEEE, pp. 442 – 446, Sep. 2008.

70

71

6 Conclusion

The Application Specific Instruction-set Processors has a great diffusion in different ap-

plications thanks to continuous increasing of chip density. This Ph. D. thesis presents an

innovative approach for the realization of the Servo Subsystem of an Hard Disk Drive

R/W channel. The Microprogrammed Servo Sequencer (MSS) designed implements a

generic Servo Subsystem usually realized with an hardwired approach (a Finite State Ma-

chine). MSS is an Application Specific Instruction-set Processors: it is composed by an

elaborating core, embedded counters, programmable I/O ports and a Reprogramming Fi-

nite State Machine; the MSS instruction set contains both generic both custom instruc-

tions dedicated to Servo operations. All the RTL source code that describes Micropro-

grammed Servo Sequencer is parametric so that it is possible to dimension part of Instruc-

tion Set fields to fit different Servo system features. Moreover the reprogramming process

provides Microprogrammed Servo Sequencer behavior changing: after Integrated circuit

fabrication it is possible to change its behavior by means of dedicated firmwares for dif-

ferent Servo System fitting. The Assertion Based Verification process supplies the MSS

behavior improvement reducing functional bugs number before manufacturing process.

This kind of approach can be used not only in Verification process, but also in Test phase.

Moreover for every MSS versions needed to fit different Servo applications Assertion

Based Verification can be reused to verify MSS behavior.

The MSS is then reprogrammed with a dedicated firmware for the emulation of the Hard

Disk Drive Servo read/write channel servo system; results on this real application prove

that the Microprogrammed Servo Sequencer can operate like a Servo System. Synthesis

results show that the MSS area is bigger than Servo System one, both dynamic and lea-

kage power dissipation is higher but, being MSS RTL source code parametric it is possi-

ble to change ISA dimensioning to fit new Servo system features; after that being MSS

programmable it is possible to change its behavior after IC fabrication.

72

73

7 Figures index

Figure 2.1.1 Hard Disk Drive ... 10

Figure 2.2.1 User, normal servo and miniwedge servo data ... 11

Figure 2.3.1 ASIC non-recurring design and manufacturing costs ... 12

Figure 3.1.1 MIPS architecture ... 18

Figure 3.2.1 Harvard memory architecture ... 19

Figure 3.2.2 Von Neumann memory architecture .. 19

Figure 3.3.1 Microprogrammed Servo Sequencer architecture .. 20

Figure 3.3.2 MSS elaborating core ... 21

Figure 3.3.3 Instruction Memory details .. 21

Figure 3.3.4 Register Unit details ... 22

Figure 3.3.5 a) Addressing space Servo version 1 example 1; b) Addressing space Servo version 2 example
 ... 23

Figure 3.4.1 MIPS instruction-set ... 23

Figure 3.4.2 MSS Instruction-set .. 23

Figure 3.4.3 MIPS Instruction-set .. 24

Figure 3.4.4 MSS Instruction-set .. 24

Figure 3.4.5 JUMPCS example .. 26

Figure 3.4.6 Signal Mapping mechanism example ... 27

Figure 3.4.7 Signal Mapping instruction execution example ... 27

Figure 3.4.8 JUMPCS execution .. 28

Figure 3.4.9 COUNTER instruction ... 29

Figure 3.4.10 Servo Gate WAIT .. 30

Figure 3.5.1 Reprogramming Finite State Machine.. 30

Figure 3.5.2 Reprogramming process ... 31

Figure 3.5.3 Firmware .. 32

Figure 3.5.4 MSS Firmware and Machine Code: the MC I expressed in decimal coding 32

Figure 3.5.5 IDLE reprogramming phase: the MSS is inactive .. 32

Figure 3.5.6 LD reprogramming phase ... 33

Figure 3.5.7 LW reprogramming phase .. 33

74

Figure 3.5.8 RN reprogramming phase: firmware execution ... 33

Figure 4.1.1 Design and Manufacturing Flow .. 38

Figure 4.1.2 Chip cost ... 38

Figure 4.1.3 Market Window Revenue ... 39

Figure 4.1.4 Market Window cumulative revenue ... 39

Figure 4.1.5 Loss of Revenue due to Delay to Market ... 39

Figure 4.1.6 Loss of cumulative Revenue due to delay to market .. 39

Figure 4.1.7 Respins due to functional bugs [4.4] .. 40

Figure 4.1.8 Black Box approach ... 41

Figure 4.1.9 White Box approach ... 41

Figure 4.1.10 Verification and test processes ... 42

Figure 4.2.1 Design and manufacturing process whit assertion checkers ... 43

Figure 4.2.2 Not ABV approach ... 43

Figure 4.2.3 ABV approach .. 44

Figure 4.3.1 JUMPCS execution .. 45

Figure 4.3.2 Firmware example with JUMPCS instruction .. 46

Figure 4.3.3 JUMPCS branch not execution signals evolution .. 46

Figure 4.3.4 JUMPCS branch execution signals evolution .. 46

Figure 4.3.5 Firmware used for JUMPCS branch not execution verification ... 48

Figure 4.3.6 PSL assertion verification in case of JUMPCS branch not execution 48

Figure 4.3.7 Firmware used for JUMPCS branch not execution with a subsequent JUMP verification 49

Figure 4.3.8 PSL assertion verification in case of JUMPCS branch not execution with a subsequent JUMP
 ... 49

Figure 4.3.9 Firmware used for JUMPCS branch not execution with a subsequent NOP verification 49

Figure 4.3.10 PSL assertion verification in case of JUMPCS branch not execution with a subsequent NOP
 ... 50

Figure 4.3.11 Firmware used for JUMPCS branch execution verification ... 51

Figure 4.3.12 PSL assertion verification in case of JUMPCS branch execution .. 51

Figure 4.3.13 Firmware used for JUMPCS branch execution with a subsequent JUMP verification 52

Figure 4.3.14 PSL assertion verification in case of JUMPCS branch execution with a subsequent JUMP.. 52

Figure 4.3.15 Firmware used for JUMPCS branch execution with a subsequent NOP verification 52

75

Figure 4.3.16 PSL assertion verification in case of JUMPCS branch execution with a subsequent NOP 53

Figure 5.1.1 User, normal servo and miniwedge servo data ... 58

Figure 5.1.2 Regular Servo Sequencer Finite State Machine Diagram .. 59

Figure 5.2.1 State label correspondence (firmware example) .. 60

Figure 5.2.2 Finite State Machine diagram emulated by Microprogrammed Servo Sequencer 61

Figure 5.2.3 Part of MSS FSM ... 62

Figure 5.2.4 Firmware example .. 62

Figure 5.3.1 MSS Instruction-set .. 63

Figure 5.4.1 Behavioral matching verification ... 63

Figure 5.5.1 RAM single port symbol .. 64

Figure 5.5.2 RAM dual port symbol ... 66

Figure 9.1.1 PSL P1 assertion example .. 80

Figure 9.1.2 SERE PSL P2 assertion example ... 80

76

77

8 Tables index

Table 3.4.1 Instruction-set architecture .. 24

Table 4.4.1 Firmwares for simulation based verifications of JUMP, NOP and JUMPCS instructions 53

Table 4.4.2 Firmwares for simulation based verifications of NOP and JUMPCS instructions possible
interactions .. 54

Table 5.5.1 RAM single port primary parameters .. 64

Table 5.5.2 RAM single port pin description ... 65

Table 5.5.3 RAM single port derived parameter .. 65

Table 5.5.4 RAM single port physical parameter ... 65

Table 5.5.5 RAM dual port primary parameters ... 66

Table 5.5.6 RAM dual port pin description .. 67

Table 5.5.7 RAM dual port physical parameter .. 67

Table 5.5.8 RAM dual port derived parameter ... 67

Table 5.5.9 Synthesis results .. 68

Table 5.5.10 Synthesis results details ... 68

78

79

9 Appendixes

9.1 Property Specification Language assertion

PSL language comes from IMB Sugar language. It has been improved from Accelera and in

2005 it became an IEEE standard. It is compatible with VHDL, Verilog, SystemC and Sys-

temVerilog. A methodology based on property definition has been defined. It has great verifi-

cation potentiality that allow to increment productivity and quality of electronics devices re-

ducing so time-to-market.

An important feature of PSL language is the possibility of using temporal relation by means

of SERE (Sequential Extended Regular Expressions): it is possible to control both the value

of a signal in an instant both a signal temporal sequence evolution by means of automatic

function defined in PSL.

Properties can describe desirable device behavior and eventually (an assertion must be acti-

vated with an assert) check the device.

PSL language has three different level:

- Boolean: a functionality that has to be checked is defined by means of the control of

signal and variable values present in the source code of the device. These functionali-

ties is described as properties evaluated during simulation.

- Temporal: it is possible to evaluate device feature in different moment and to consider

also signal temporal sequences. If these temporal checks were described in an HDL

language they would lead to a waste of registers and complex logic.

- Verification: this level informs simulation tools about directives such as properties that

have to be checked.

PSL assertions can be directly introduced in RTL source code as special comments: the word

“psl” at the beginning of comment content permits to recognize assertions. For simulation

tools these special comments are considered as assertions and elaborated to execute verifica-

tion process; instead synthesis tools don’t consider any of these comments to avoid the inser-

tion of non functionality features in the device netlist.

The following examples explain PSL assertion and SERE use.

The first example defines the property P1: it checks that READ and WRITE signals are never

contemporary activated.

 -- psl property P1 is never WRITE and READ;

 -- psl assert P1;

Appendixes

80

In Figure 9.1.1 the assertion behavior is shown during simulation phase (considering positive

logic).

Figure 9.1.1 PSL P1 assertion example

In Figure 9.1.2 a SERE PSL assertion activated at positive clock event is shown: when A and

B signals is at high logic level in temporal sequence then C must becomes high in the next

clock cycle and in the following clock cycle A, B and C are low level.

In Figure 9.1.2 during simulation the assertion is activated three times: two successes and one

failure.

Figure 9.1.2 SERE PSL P2 assertion example

 -- psl Default Clock is rising_edge(CLK);

 -- psl property P2 is always { A ; B } |=> { C ; not (A or B or C) };

 -- psl assert P2;

81

9.2 MSS Firmware

deafault_jump 009
LAT_DC_PD 008
SG_EN_1 000
AZ_FOR_FSM 000
PREAMBLE_CNT_EN 000
PBL_FND_D 000
PD_SAFE_LOST 000
SAM_SRCH_STRT_D 000
PREAMBLE_SAFE 000
SMD_EXP_FLAG 000
SMD_DET_FLAG 000
SMD_QUAL_FLAG 000
SPN_PGR_MAX 000
SEQR_RRO_EXP2 000
R_SVO_AZ_DIG 000
ACB_FIR_LATENCY 007
ACB_LATENCY 002
SPN_PGR_MIN 006
SPN_PGR_MAX 00a
t0 000
t1 000
t2 000
t3 000

SEQR_SG port_1 1
PGR_READY port_1 2
AZ_SEQ port_1 4
DET_SVO_SMD port_1 8
SVO_SMD_QL_OK port_1 16
SVO_SMD_EXP port_1 32
DET_GRAY_RDY port_1 64
DET_RRO_VL1 port_2 1
DET_RRO_VL2 port_2 2
BRT_END port_2 4
BRT_TRIGGER port_2 8
RRW_END_WRITE port_2 16
SPN_PBL_FOUND port_2 32
SPN_DC_FOUND port_2 64
SVO_SPI_SMD_FND port_3 1
SVO_POL_KO port_3 2
DET_SVOSMD_INV port_3 4
ONE_EARLY_GC port_3 8
ZONE_CHANGE port_3 16
SCAN_MODE port_3 32
INT_CNT_GEN port_4 126
SEQR_LD_DATA port_out_1 1
SEQ_CODE_EN port_out_1 2
SEQR_ITR_ON port_out_1 4
SEQR_BRT_START port_out_1 8
RST_INTF port_out_1 16
SEQ_OK_INTF port_out_1 32

SEQ_UPD_PARAM port_out_1 64
SEQR_CKEN_SVO port_out_2 1
SEQR_RST_LOOPS port_out_2 2
INT_SAM_SRC port_out_2 4
SG_EN port_out_2 8
SVO_AZ_DIG port_out_2 16
SEQR_LD_LOOPS port_out_2 64
SEQR_RRO_EXP1 port_out_3 1
SEQR_AGC_EN port_out_3 2
SEQ_ID_RRO port_out_3 4
SEQR_PGR_SRST port_out_3 8
SEQR_PGR_START port_out_3 16
SEQ_UPDATE_LOOP port_out_3 32
SEQR_UPD_GLS port_out_3 64
SEQR_FL_SG port_out_4 1
INTF_ITR_CODE port_out_1 22
UPD_OK_BRT_ITR port_out_1 108
ITR_CODE port_out_1 6
ITR_LD port_out_1 5
UPD_OK_BRT port_out_1 104
START_SRST_AGC port_out_3 26
START_SRST port_out_3 24
UPDATE_SRST port_out_3 40
UPDATE_SRST_AGC port_out_3 48
START_RRO port_out_3 17
UPD_START port_out_3 80
SEQ_SEARCH_1 port_SPI_1 1
SPI_SVO_DC_EN port_SPI_1 2
SPI_PGR_IN_SEL port_SPI_1 4
SPI_PGR_WIN_SEL port_SPI_1 8
SPI_SVO_PD_SAFE port_SPI_1 112
SPI_SVO_AZ_PGR port_SPI_2 3
SPI_SVO_LATENCY port_SPI_2 30
SPI_RRO_STP_QBAD port_SPI_2 64
SPI_AZ_DIG port_SPI_3 1
SPI_SVO_AZ_EN port_SPI_3 2
SPI_SG_IGNORE port_SPI_3 4
SVO_RRO_MD port_SPI_3 24
INT_CNT_GEN_end port_in_SPECIAL_1 3
SAM_SRCH_STRT port_in_SPECIAL_1 4
END_GC port_in_SPECIAL_1 8
RD_RRO port_in_SPECIAL_1 16
RRO1_CNT_END port_in_SPECIAL_1 32
RRO2_CNT_END port_in_SPECIAL_1 64
RD_2RRO port_in_SPECIAL_2 1
WR_RRO port_in_SPECIAL_2 2
ANALOG_AZ_RSY port_in_SPECIAL_2 12
ACQ_COUNT_EN port_in_SPECIAL_2 16
SEQ_NSVO_MINIWB port_in_SPECIAL_2
32
SEQR_SG_SYNC port_in_SPECIAL_2 64

Appendixes

82

IDLE
 NMI SEQR_SG 1
 COMPI SPI_PGR_IN_SEL 1
 JUMPCS STATE_ACB_FIR_LATENCY
 ADD SPI_SVO_LATENCY
ACB_LATENCY
 ADD Acc SPI_SVO_AZ_PGR
 COUNTER INT_CNT_GEN Acc
 JUMP IDLE_2
STATE_ACB_FIR_LATENCY
 ADD SPI_SVO_LATENCY
ACB_FIR_LATENCY
 ADD Acc SPI_SVO_AZ_PGR
 COUNTER INT_CNT_GEN Acc
IDLE_2
 SLL SEQR_SG 1
 OR Acc SEQR_SG
 COMPNI Acc 3
 JUMPCS IDLE
 COMPI SPI_SG_IGNORE 1
 JUMPCS IDLE
 SET_V SG_EN 1
SVO_SG1
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 COMPNI SEQR_SG 1
 JUMPCS IDLE
SVO_SG2
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V SEQR_LD_LOOPS 1
 COMPI SEQR_SG 0
 JUMPCS SVO_SG_END
 SET SVO_AZ_DIG R_SVO_AZ_DIG
 COMPI R_SVO_AZ_DIG 0
 JUMPCS STATE_AZ_SEQ
 SET AZ_FOR_FSM AZ_SEQ
 JUMP STATE_AZ_FOR_FSM
STATE_AZ_SEQ
 AND SPI_SVO_AZ_EN ANA-
LOG_AZ_RSY
 SET AZ_FOR_FSM Acc
STATE_AZ_FOR_FSM
 COMPI AZ_FOR_FSM 1
 JUMPCS AZ_WIN
 COMPNI SEQ_NSVO_MINIWB 1
 JUMPCS WAIT_INPUT_MWG
WAIT_INPUT
 COUNTER INT_CNT_GEN 126
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
WAIT_INPUT2
 NMI SEQR_SG_SYNC 0
 JUMPCS SVO_SG_END
 NMI INT_CNT_GEN_end 2

 CONCAT SEQ_SEARCH_1
SPI_SVO_DC_EN
 COMPI Acc 3
 JUMPCS DC_ERASE_SRCH
 CONCAT SEQ_SEARCH_1
SPI_SVO_DC_EN
 COMPI Acc 2
 JUMPCS PRBL_SRCH
 SET_V SEQR_PGR_START 1
PGR_DATA_PRMBL
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 NMI SEQR_SG_SYNC 0
 JUMPCS CLOSE_SG
 NMI PGR_READY 1
 SET_V INTF_ITR_CODE 7
WAIT_SAM_SRCH
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V INT_SAM_SRC 1
 NMI SAM_SRCH_STRT 1
 NMI SEQR_SG_SYNC 0
 JUMPCS CLOSE_SG
SAM_SRCH
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 NOT SEQ_SEARCH_1
 COMPI Acc 0
 JUMPCS STATE_SVO_POL
 NMI SEQR_SG_SYNC 0
 JUMPCS CLOSE_SG
 NMI DET_SVO_SMD 1
 AND DET_SVOSMD_INV
SVO_POL_KO
 OR Acc DET_SVO_SMD
 COMPI Acc 0
 JUMPCS SAM_SRCH
GC_DET
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 NMI SEQR_SG_SYNC 0
 JUMPCS CLOSE_SG
 COMPI SVO_POL_KO 1
 JUMPCS STATE_END_GC_1
 JUMP STATE_END_GC_0
STATE_END_GC_1
 COMPI ONE_EARLY_GC 0
 JUMPCS GC_DET
 JUMP STATE_END_GC_3
STATE_END_GC_0
 NMI DET_GRAY_RDY 1
 COMPI DET_GRAY_RDY 0
 JUMPCS GC_DET
STATE_END_GC_3
 SET_V UPD_OK_BRT_ITR 14

83

BRST_DEM
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
WAIT_TRIGGER
 NMI BRT_TRIGGER 1
 SET_V SEQR_LD_DATA 0
 JUMP BRST_DEM_2
STATE_LD_DATA
 SET_V SEQR_LD_DATA 0
BRST_DEM_2
 NMI SEQR_SG_SYNC 0
 JUMPCS CLOSE_SG_A
WAIT_RRO1_BRT
 CONCAT BRT_END RRO1_CNT_END
 COMPI Acc 3
 JUMPCS WAIT_RRO1_BRT2
 CONCAT BRT_END RRO1_CNT_END
 COMPI Acc 1
 JUMPCS PGR_RRO1_A
 CONCAT BRT_END RRO1_CNT_END
 COMPI Acc 2
 JUMPCS WAIT_RRO1_CLOSE
 JUMP WAIT_RRO1_BRT
WAIT_RRO1_BRT2
 SET_V SEQR_UPD_GLS 1
 COMPI RD_RRO 0
 JUMPCS CLOSE_SG
 SET_V SEQR_LD_DATA 0
 SET_V SEQR_PGR_START 1
 JUMP PGR_RRO1
WAIT_RRO1_CLOSE
 SET_V SEQR_UPD_GLS 1
 SET_V SEQR_LD_DATA 0
 COMPI RD_RRO 0
 JUMPCS CLOSE_SG
WAIT_RRO1
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V SEQR_LD_DATA 0
 NMI RRO1_CNT_END 1
 NMI SEQR_SG_SYNC 0
 JUMPCS CLOSE_SG_B
 SET_V SEQR_PGR_START 1
PGR_RRO1
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V SEQR_LD_DATA 0
 NMI SEQR_SG_SYNC 0
 JUMPCS CLOSE_SG_B
 NMI PGR_READY 1
 SET_V ITR_CODE 3
DATA_RRO1
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V ITR_LD 1

DATA_RRO1_A
 CONCAT DET_RRO_VL1
SEQR_SG_SYNC
 COMPI Acc 3
 JUMPCS STATERRO2_CNT_END
 CONCAT DET_RRO_VL1
SEQR_SG_SYNC
 COMPI Acc 2
 JUMPCS CLOSE_SG_C
 CONCAT DET_RRO_VL1
SEQR_SG_SYNC
 COMPI Acc 1
 JUMPCS DATA_PGR_RRO1_2
 CONCAT DET_RRO_VL1
SEQR_SG_SYNC
 COMPI Acc 0
 JUMPCS CLOSE_SG_B
STATERRO2_CNT_END
 COMPI RRO2_CNT_END 0
 JUMPCS WAIT_CLOSE_RRO2
 COMPI RD_2RRO 0
 JUMPCS CLOSE_SG
 SET_V SEQR_PGR_START 1
 JUMP PGR_RRO2
WAIT_CLOSE_RRO2
 COMPNI RD_2RRO 1
 JUMPCS CLOSE_SG
WAIT_RRO2
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V SEQR_LD_DATA 0
 NMI SEQR_SG_SYNC 0
 JUMPCS CLOSE_SG_D
 COMPI RRO2_CNT_END 0
 JUMPCS WAIT_RRO2
 SET_V SEQR_PGR_START 1
PGR_RRO2
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V SEQR_LD_DATA 0
 NMI SEQR_SG_SYNC 0
 JUMPCS CLOSE_SG_D
 COMPI PGR_READY 0
 JUMPCS PGR_RRO2
 SET_V ITR_CODE 3
DATA_RRO2
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V ITR_LD 1
 SET_V SEQ_ID_RRO 1
 NMI SEQR_SG_SYNC 0
 JUMPCS DATA_RRO2
 COMPI DET_RRO_VL2 0
 JUMPCS CLOSE_SG_D
CLOSE_SG

Appendixes

84

 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V SEQR_RST_LOOPS 1
 COMPI WR_RRO 0
 JUMPCS CLOSE_SG_SEC
 NOT SVO_SMD_QL_OK
 AND Acc SPI_RRO_STP_QBAD
 STORE t0
 NOT SEQR_SG_SYNC
 AND Acc t0
 OR Acc RRW_END_WRITE
 STORE t0
 NOT SVO_SPI_SMD_FND
 OR Acc t0
 STORE t0
 CONCAT SEQR_SG
SEQ_NSVO_MINIWB
 CONCAT Acc t0
 COMPI Acc 2
 JUMPCS CLOSE_SG
SVO_SG_END
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V SEQR_FL_SG 1
SVO_SG3
 SET_V SEQR_LD_DATA 0
SVO_SG4
 SET_V SEQR_LD_DATA 0
 JUMP IDLE
CLOSE_SG_SEC
 NMI SEQR_SG_SYNC 0
 JUMPCS CLOSE_SG
 JUMP SVO_SG_END
DATA_PGR_RRO1_2
 COMPI RRO2_CNT_END 0
 JUMPCS DATA_RRO1
 SET_V SEQR_RRO_EXP1 1
 SET_V SEQR_PGR_START 1
 JUMP PGR_RRO2
PGR_RRO1_A
 SET_V SEQR_UPD_GLS 1
 SET_V SEQR_PGR_START 1
 JUMP PGR_RRO1
CLOSE_SG_A
 SET SEQR_RRO_EXP1 RD_RRO
 SET SEQR_RRO_EXP2 RD_2RRO
CLOSE_SG_E
 SET_V SEQR_UPD_GLS 1
 JUMP CLOSE_SG
CLOSE_SG_B
 SET_V SEQR_RRO_EXP1 1
CLOSE_SG_C
 SET SEQR_RRO_EXP2 RD_2RRO
 JUMP CLOSE_SG
CLOSE_SG_D

 SET_V SEQR_RRO_EXP2 1
 JUMP CLOSE_SG
AZ_WIN
 SET_V SEQR_LD_LOOPS 1
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 COMPI SEQR_SG 0
 JUMPCS SVO_SG_END
 COMPI AZ_FOR_FSM 1
 JUMPCS AZ_WIN
 NOT SEQ_NSVO_MINIWB
 COMPI Acc 0
 JUMPCS WAIT_INPUT
WAIT_INPUT_MWG
 COUNTER INT_CNT_GEN 126
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 NMI SEQR_SG_SYNC 0
 JUMPCS SVO_SG_END
 NMI INT_CNT_GEN_end 2
 COMPI INT_CNT_GEN_end 0
 JUMPCS WAIT_INPUT_MWG
 SET_V SEQR_PGR_START 1
PGR_MWEDGE
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 NMI SEQR_SG_SYNC 0
 JUMPCS SVO_SG_END
 COMPI PGR_READY 0
 JUMPCS PGR_MWEDGE
 SET_V INTF_ITR_CODE 7
SAM_MWEDGE
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V SEQR_ITR_ON 1
 NMI SEQR_SG_SYNC 0
 JUMPCS CLOSE_SG
 COMPI DET_SVO_SMD 0
 JUMPCS SAM_MWEDGE
 SET_V UPD_OK_BRT_ITR 14
BRST_MWEDGE
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 CONCAT BRT_END SEQR_SG_SYNC
 COMPI Acc 1
 JUMPCS BRST_MWEDGE
 JUMP CLOSE_SG_E
PRBL_SRCH
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V SEQR_AGC_EN 1
 COMPI SEQR_SG_SYNC 0
 JUMPCS PGR_END
 COMPI SPN_PBL_FOUND 0
 JUMPCS PRBL_PGR

85

 SET_V SEQR_PGR_START 1
 SET SEQ_UPDATE_LOOP
ACQ_COUNT_EN
 COMPI SPI_PGR_WIN_SEL 1
 JUMPCS STATE_CNT_SPN
 COUNTER INT_CNT_GEN
SPN_PGR_MIN
 JUMP PGR_SPN_CHK
DC_ERASE_SRCH
 COUNTER INT_CNT_GEN
LAT_DC_PD
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET t0 LAT_DC_PD
 SET_V START_SRST_AGC 1
 NMI SEQR_SG_SYNC 0
 JUMPCS SVO_SG_END
 COMPI SPN_DC_FOUND 0
 JUMPCS DC_ERASE_SRCH
WAIT_DC_PD
 COUNTER INT_CNT_WT 126
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V SEQR_AGC_EN 1
 NMI SEQR_SG_SYNC 0
 JUMPCS PGR_END
 NMI INT_CNT_GEN_end 1
 COMPI INT_CNT_GEN_end 0
 JUMPCS DC_PD_PGR
 COMPI SPN_PBL_FOUND 1
 JUMPCS STATE_PGR_SPN_CHK
 SET_V SEQR_PGR_SRST 0
 JUMP DC_ERASE_SRCH
DC_PD_PGR
 SET_V SEQR_PGR_SRST 0
 JUMP WAIT_DC_PD
STATE_PGR_SPN_CHK
 SET_V START_SRST 3
 COMPI SPI_PGR_WIN_SEL 1
 JUMPCS STATE_CNT_SPN
 COUNTER INT_CNT_GEN
SPN_PGR_MIN
PGR_SPN_CHK
 COUNTER INT_CNT_GEN 126
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V SEQR_AGC_EN 1
 NMI SEQR_SG_SYNC 0
 JUMPCS PGR_CLOSE_SG
 COMPI PGR_READY 1
 JUMPCS UPDATE_LOOP
 NMI INT_CNT_GEN_end 1
 CONCAT PBL_FND_D
INT_CNT_GEN_end
 COMPI Acc 0

 JUMPCS NO_UPDATE_LOOP
 SET t0 INT_CNT_GEN
 CONCAT PBL_FND_D
INT_CNT_GEN_end
 COMPI Acc 6
 JUMPCS STATE_FF
 JUMP PGR_SPN_CHK
PGR_CLOSE_SG
 SET_V SEQR_PGR_SRST 0
 JUMP CLOSE_SG
UPDATE_LOOP
 CONCAT PBL_FND_D
INT_CNT_GEN_end
 COMPI Acc 6
 JUMPCS STATE_WT_SAM_SRCH
 SET_V SEQ_UPDATE_LOOP 1
NO_UPDATE_LOOP
 SET_V SEQR_PGR_SRST 0
 COMPI SPI_SVO_DC_EN 1
 JUMPCS DC_ERASE_SRCH
 NOP 1
 JUMP PRBL_SRCH
STATE_FF
 COUNTER INT_CNT_GEN t0
 JUMP PGR_SPN_CHK
STATE_WT_SAM_SRCH
 SET_V INTF_ITR_CODE 7
 SLL SPI_SVO_PD_SAFE 3
 COUNTER INT_CNT_GEN Acc
 SET_V PREAMBLE_CNT_EN 1
WT_SAM_SRCH_SPN
 COUNTER INT_CNT_GEN 126
 NOT ZONE_CHANGE
 SET SEQR_CKEN_SVO Acc
 SET_V SEQR_ITR_ON 1
 SET_V SEQR_AGC_EN 1
 NMI SEQR_SG_SYNC 0
 JUMPCS CLOSE_SG
 COMPI PD_SAFE_LOST 0
 JUMPCS STATE_PD_SAFE
STATE_DEFAULT_PD_SAFE
 SET_V UPDATE_SRST 2
 COMPI SPI_SVO_DC_EN 1
 JUMPCS DC_ERASE_SRCH
 NOP 1
 JUMP PRBL_SRCH
STATE_PD_SAFE
 CONCAT SAM_SRCH_STRT_D
PREAMBLE_SAFE
 COMPI Acc 3
 JUMPCS CNT_SAM
 CONCAT SAM_SRCH_STRT_D
PREAMBLE_SAFE
 COMPI Acc 2
 JUMPCS STATE_DEFAULT_PD_SAFE

Appendixes

86

 SET_V PREAMBLE_CNT_EN 1
 JUMP WT_SAM_SRCH_SPN
CNT_SAM
 SET_V PREAMBLE_CNT_EN 0
 JUMP SAM_SRCH
STATE_SVO_POL
 COMPI SVO_POL_KO 1
 JUMPCS CLOSE_SG
 COMPI SMD_EXP_FLAG 0
 JUMPCS STATE_SAM_GC
 SET_V UPDATE_SRST_AGC 5
 COMPI SPI_SVO_DC_EN 1
 JUMPCS DC_ERASE_SRCH
 NOP 1
 JUMP PRBL_SRCH
STATE_SAM_GC
 CONCAT SMD_DET_FLAG

SMD_QUAL_FLAG
 COMPI Acc 3
 JUMPCS GC_DET
 SET_V SEQR_AGC_EN 1
 JUMP SAM_SRCH
PGR_END
 SET_V SEQR_PGR_SRST 0
 JUMP SVO_SG_END
PRBL_PGR
 SET_V SEQR_PGR_SRST 0
 JUMP PRBL_SRCH
STATE_CNT_SPN
 COUNTER INT_CNT_GEN
SPN_PGR_MAX
 JUMP PGR_SPN_CHK

