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Abstract—We revisit the well-known Tkach and Chraplyvy
(T–C) diagram of feedback regimes in semiconductor lasers. Our
aim is twofold: first, extending the classification of feedback ef-
fects in the T–C diagram to short and long external cavities, and
to coherent and incoherent interactions; second and more impor-
tant, identifying in the diagram feedback phenomena that have
been meanwhile studied and developed to noteworthy applications,
namely, self-mixing, period-1 and multiperiodicity, intermittency
and chaos. We complement the feedback diagram with application
regions, so as to describe not only feedback effects detrimental to
a laser used as the transmitter of an optical link, but also feed-
back effects in the weak and strong regime of interaction, devel-
oped into applications for instrumentation and communications in
recent years.

Index Terms—Chaos, high-level dynamics, laser theory, optical
feedback, semiconductor lasers.

I. INTRODUCTION

FOR over 25 years, the diagram of Tkach and Chraplyvy
(T–C) [1] has been the reference for describing and clas-

sifying feedback effects in semiconductor laser subjected to
retroreflections from a remote target [2]–[4]. The T–C diagram
identifies five regimes of feedback, and since its publication has
become the milestone reference cited in literature and reported
in textbooks, the first being the book of Petermann [2].

At the time the T–C diagram was developed, feedback was
regarded mainly as a disturbance affecting the performance of
linewidth and noise of a laser, and impairing the use of the
source in optical fiber communication systems.

Let us consider the basic laser scheme reported in Fig. 1 as
the paradigm of feedback. According to the original descrip-
tion [1] of feedback-induced regimes (see Fig. 2), region I is
that of the lowest feedback down to −80 dB, yet giving rise to
linewidth narrowing or broadening, according to the phase shift
2kL of the optical path external to the laser; region II is up to
around −45 dB and involves frequency splitting of the mode,
for out-of-phase feedback, and mode hopping; region III is the
narrow-range feedback region (about −39 to −45 dB) in which
the laser returns to single narrow-line mode; region IV (start-
ing at ≈−39 dB, independent from distance) is that of satellite
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Fig. 1. Schematic of a laser diode subjected to optical feedback from an
external reflector (or diffuser) at a distance L, giving back a fraction rext of
the impinging field amplitude. Output mirror (field) reflectance is r2 . Both rext
and r2 determine the feedback and coupling factors, K and C [see (1) and
(2)]. When used in cryptography, the scheme is identified as DOF, whereas it is
called SMI when used in phase (and/or amplitude) measurements.

Fig. 2. Original diagram of coupling strength (or back-reflection attenuation)
in decibel, versus external cavity length L. According to the original descrip-
tion of Tkach and Chraplyvy [1], region I corresponds to linewidth narrowing
or broadening (depending on the phase of feedback), II to line splitting and
mode hopping, III return to single-mode narrow-line operation, IV to coherence
collapse, V to oscillation on the external cavity. Note that, as the feedback ratio
is expressed in decibel, numbers on Y -axis apply both to power attenuation and
to electric field amplitude attenuation K (from [1], by courtesy of the IEEE).

modes appearing at multiples of the frequency of relaxation, and
of line broadening in a condition termed coherence collapse; re-
gion V is observed only at the highest coupling (e.g., ≈−10 dB,
usually requiring antireflection coating of output facet), and is
independent of distance too, and brings the laser back to the
single-mode oscillation, which now uses the external reflector
as the cavity mirror.

The classification in [1] was backed by a theoretical analysis
based on the Van der Pol equations with an added delayed term,
a formulation with the same structure in the variables E and φ
of the Lang and Kobayashi equations [5], and one predicting

1077-260X/$31.00 © 2012 IEEE



1500309 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 19, NO. 4, JULY/AUGUST 2013

mode hopping, multiperiodicity, chaos, and all the high-level
dynamics phenomena.

Experiments confirming theoretical findings were conducted
on a 1.55-µm distributed feedback laser subjected to a back-
reflection from an external (20–400 cm) reflector with adjustable
reflectance. The time dependence of power was observed on mil-
lisecond scale to reveal mode hopping. The frequency line was
measured by an FP scanner with ≈50 MHz resolution to ob-
serve frequency splitting, sideband modulations, and linewidth
broadening.

In this way, the picture presented by T–C diagram to the user
of laser diode as a source for fiber optics communications was
complete, and warned that only very weak returns (possibly
down to less than −80 dB) can be tolerated with no penalty on
noise and linewidth properties of the source.

II. DESCRIPTION OF WEAK FEEDBACK:
THE SELF-MIXING REGIME

In the years that followed, however, high-level dynamic ef-
fects in laser diodes have been studied in much more detail.
This, from the viewpoint of the evolution and the descriptive
character of the oscillation, is represented by field amplitude E
and phase φ, not just by the linewidth.

Many authors have reported about the time dependence (or
time series) of the field amplitude and associated opening and
closing bifurcations, and have studied the frequency spectrum
(of both field amplitude and frequency fluctuations) and the state
diagram (E versus dE/dt or dφ/dt) as a function of feedback
strength K and distance L to the remote reflector.

These studies have pointed out that additional parameters af-
fecting the dynamics are to be considered to fully account for
the laser behavior, namely: 1) the optical phase associated with
distance, 2kL (mod 2π) when the distance is less than the equiv-
alent relaxation frequency f2 , or L < c/2f2 (this brings about a
distinction between short and long cavities [3]–[6]); 2) the con-
dition of distance L being smaller or larger than the coherence
length Lcoh of the unperturbed source, leading to the two cases
of coherent and incoherent feedback; and 3) of course, all the
constitutive parameters (gain, loss, photon and carrier lifetimes,
etc.) and above all, the alpha (or linewidth enhancement) factor
influencing the actual regime of high dynamical behavior.

Rather than just an undesired disturbance to be avoided, the
weak feedback regime (region I of T–C diagram) started to
attract interest in 1990s as a hint to measurement applications.
Indeed, as feedback affects both amplitude and frequency of the
oscillating field, the resulting AM and FM modulations carry
signals ∆E and ∆ν related to and useful for the measurement
of amplitude and phase of the returning field.

The effect on frequency was already noticed by Tkach and
Chraplyvy [1]: in region I, they reported linewidth narrowing or
broadening, depending on the phase of feedback. They analyzed
the linewidth and found that it is a sinusoidal function of the
external-path phase 2kL, i.e., ∆ν ≈ sin 2kL (see more details
later). But the small signal sin 2kL responsible for spoiling
the linewidth was never recovered for use in measurements,

because it was impressed on the optical carrier and was difficult
to demodulate down to electrical frequency.

Unnoticed in the first studies, the effect on amplitude, i.e., the
AM of the field E was later realized as quite suitable to develop
measurements [7], [11], as the ∆E signal is readily available on
the power P ≈ E2 emitted by the laser.

The ∆E amplitude signal always accompanies that of fre-
quency ∆ν, and for weak feedback its dependence is again
sinusoidal, of the type ∆E ≈ E0 cos 2kL.

Thus, it was realized that feedback-induced modulations, AM
and FM, carry driving terms that contain information about the
phase φ = 2kL of the external path length as well as of the
attenuation αext = ∆E/E0 of the returned (echo) field.

The interaction generating AM and FM modulations of the
cavity field has been called self-mixing, because it comes out as
a consequence of the “mixing” of the in-cavity unperturbed field
and the weak returned signal, a process which is easily seen to
be coherent [7].

Perhaps the most interesting application of self-mixing is in
optical measurements, as we can develop a self-mixing inter-
ferometer (SMI) based on the AM and FM signals detected by,
e.g., a photodiode placed on the rear mirror of the laser (usually
the power monitor photodiode can be used to detect the AM). A
review of SMI applications to a variety of physical measurands
has been recently published [8] and we address the interested
readers to it for more details.

At any rate, we can develop an SMI at two different levels
of feedback strength: one very weak where AM and FM signals
are cosine and sine of the external path length 2kL, and we take
advantage of a dual-mode source to access also the FM sig-
nal, after a down conversion to electrical frequencies by beating
with an unperturbed line in dual-mode laser (see [8] and [11] for
details). From the sin 2kL and cos 2kL signals, we can unam-
biguously trace back the phase φ = 2kL, and measure changes
of it (for example, in steps of the period ∆φ = 2π). In this way,
we can obtain the change or increment of the corresponding
target distance ∆L (in the example, in steps of ∆L = 2π/2k =
half-wavelength).

An SMI instrument developed under this strategy is classified
as a two-channel, incremental measurement of displacement and
does not require any phase unwrapping [8].

Of course, we can also make the measurement using just one
signal (sin or cos) to retrieve ∆L from ∆φ, but we shall be
able to circumvent the ambiguity associated with the sinusoidal
function by means of phase unwrapping, and sometime this is a
questionable operation.

Another way we can develop an SMI is at moderate feedback,
when the AM cosine waveform becomes distorted and the ambi-
guity can be removed, thanks to the regime of single-switching
per period [8]. So, we obtain a one-channel instrument. This hap-
pens when another parameter connected to attenuation, namely
the coupling or C factor, is in the range 1–5. The C factor is
defined as

C = (1 + α2)1/2 K(τext/τin) (1)

where K is field attenuation, explicitly given, in terms of output
mirror reflectance r2 and (remote) target reflectance rext (see
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Fig. 1) by

K = ηs(1 − r2
2 )(rext/r2). (2)

In (2), ηs is the mode superposition factor (including the field
attenuation αext on the external path). In (1), τext = 2 L/c and
τin = 2Llasnlas /c are the time of flight of the round trip external
(to target) and internal (cavity) to the laser, and α is the linewidth
enhancement factor. Inserting the expression of τext in (1) gives

C = (const.) KL. (1′)

Thus, lines of constant C in the T–C diagram, have a −45◦

slope, as shown in Fig. 2.
Now, it is found, both from theory and experiments, that

as feedback K (or C) is increased, the sin and cos waveforms
become progressively distorted (see Fig. 3) until a switching ap-
pears in them at C > 1, due to the jump of the mode frequency on
the next available resonance of the combined three-mirror cav-
ity. This brings about the interesting possibility of removing the
phase ambiguity, by looking at the upward or downward switch-
ing polarity, which indicates the sign of the λ/2-displacement
increments [11] in the range 1 < C < 4.6.

Based on this scheme, we can build a one-channel SMI digital
incremental measurement with half-wavelength resolution us-
ing a single interferometric signal, as it has been demonstrated
in a number of papers [8], [11].

It is also possible to operate the SMI at even larger C values
(e.g., >10), but we then need a more sophisticated algorithm to
reconstruct the signal affected by multiple switching [8], [15].

A second, and equally intriguing application, is that we can
detect very weak optical echoes by looking at the amplitude
of the AM signal, either a signal physically different from the
laser oscillation or a delayed and attenuated replica of it. This
scheme is called injection coherent detector, or self-mix detector
(SMD) [8], [9].

When we are operating in the visible and near infrared
λ-range, the SMD offers just another possibility with respect
to normal coherent photodetection. While not outperforming
existing photodetection techniques, the advantage of SMD is
the easy way to make a very sensitive back-reflection detec-
tor, capable of detecting echoes down to about −90 dB of the
outgoing power [7], [9]. On the other hand, the SMD scheme
becomes a real breakthrough when we handle signals for which
photodiodes are much less efficient or not be readily available,
like at THz frequency [9], [33].

Another possibility offered by SMD is that we can dispense
with the photodetector, because we find the AM signal already
across the laser diode terminals, as anode-to-cathode voltage
∆V . This is due to the self-mixing process in a semiconduc-
tor laser, not only affecting field amplitude E, but also carrier
concentration N and hence voltage V [9], [33].

In conclusion, as we go back to the T–C diagram, we can
redraw the bottom part of it as in Fig. 4, showing that in re-
gions I and II we encounter the self-mixing regime of AM and
FM modulations, with a sine/cosine wave dependence on ex-
ternal optical path length at weak feedback and small C, and
distorted sinusoid waveforms at increased C, up to the switch-

Fig. 3. Diagram shows the waveforms of the AM signal in an SMI at increasing
feedback level. Initially, at C % 1, the AM waveform (and also FM, not shown
here) is a sinusoidal function of the external phase shift, like in a normal
interferometer, and then it becomes increasingly distorted, with the trailing
edge faster than the leading edge (C < 1) until a switching appears at the
critical value C = 1. At larger C , up to about C = 5, we find a single switch
per period and we can make a single-channel unambiguous count-based SMI.
Increasing C further (e.g., C = 15), the waveform starts jumping on one ore
more external resonances erratically, and the system enters in the chaos regime
(adapted from [11]).

ing promoted by hopping on external mode resonances, in both
the AM and FM channels.

From the point of view of applications developed in these
regions, we find [8], as depicted in Fig. 5, the two-channel
SMI and the injection detection up to about C ≈ 1, and then
the moderate feedback, one-channel SMI starting at C > 0.3
and up to C ≈ 10 with proper signal processing. The self-
mixing coherent injection detection (SMD) and the SMI share a
common noise floor limitation, typically around−90 dB [9], due
to the quantum noise associated with the detected photons [7],
[8], [11].
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Fig. 4. Revisiting the bottom part of the T–C diagram, across regions I, II,
and III: at weak feedback, we find the regime of self-mixing interaction, with
AM and FM modulations of the cavity field driven by the external path length
phase 2kL. Increasing the feedback at C = 1 and larger, we find the moderate
feedback regime with switching promoted by external cavity resonance (ECR),
initially single (one per period), then multiple for C > 10.

At the opposite end of high level of signals, we may find a
limit due to saturation of the field amplitude (see Fig. 3) and
switching of signal waveform, at C ≈ 1, from about −40 to
−30 dB. Last, in Fig. 4, we also draw the limit of maximum
distance L of the external reflector, as due to decreased signal
amplitude and limit of coherence length Lcoh , a few meters on
assuming a linewidth of some tens of megahertz.

III. THEORY AND SIMULATIONS OF FEEDBACK EFFECTS

A firm theoretical foundation to study high-level dynamics
phenomena is provided by the well-known Lang and Kobayashi
(L–K) equations [5]. These equations are the extension of the
Lamb’s rate equations [10], to the case of a semiconductor laser,
when we take account also of the concentration of states N and
its dependence on the field amplitude E or density of photons
E2 . They are equivalent to the equations used by T–C in their
seminal paper [1].

When tested against experiments, the L–K equations provide
a remarkably accurate prediction of feedback phenomena and
their trends, both at the weak-level SMI level and at the high
level of chaos-related dynamics. Thus, it is no wonder that re-
searchers have gained confidence in them and used simulations
based on L–K equations extensively for investigating compli-
cated systems, e.g., involving multiple sources or interconnected
systems.

The only deviation reported from experiments is a larger than
expected linewidth of the laser, reconciled with experiment, as

Fig. 5. Applications developed from the regimes reported in Fig. 4: at weak
feedback, the 2-channel SMI and the injection (coherent) detector of remote
optical echoes (dot-and-dash lines), and at higher feedback, the one-channel
SMI interferometer based on half-wavelength switchings (dashed line). Noise
floor and quantum noise limit associated with a typical 100-µA photocurrent
are indicated [8], for two values of observation bandwidth B.

first proposed by C.H. Henry [14], by the introduction of an
a-posteriori linewidth enhancement factor α. The L–K equa-
tions for a laser subjected to feedback [or, a delayed optical
feedback (DOF) system as in Fig. 1], are written as follows:

dE/dt=1/2 [GN (N − N0)−1/τp ]E + (K/τin)E(t − τext)

× cos[ω0τext + φ(t) − φ(t − τext)]

dφ/dt = 1/2α{GN (N − N0) − 1/τp}

+ (K/τin )E(t − τext)/E(t)

× sin[ω0τext + φ(t) − φ(t − τext)]

(d/dt)N = Jη/ed − N/τr − GN (N − N0)E2(t) (3)

where (with the typical values used in simulations)
GN = modal gain = 8.1·10−13 m3 s−1 ,
K = fraction of field coupled into the oscillating mode [see (2)]
N = carrier concentration (m−3),
N0 carrier concentration at inversion = 1.2·1024 m−3 ,
τext = 2nextL/c = round trip time of external cavity,
Φ = 2kL = 2nextk0 L external optical phase shift,
L = distance to external cavity reflector
τin = 2nlasLlas /c = round trip time of laser cavity = 5 ps,
τp = photon lifetime in laser cavity = 2 ps,
τr = carrier lifetime = 2 ns,
α = linewidth enhancement factor (taken 3 − 4.5 − 6),
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Fig. 6. The diagram of Adler’s equation of unperturbed ν0 versus perturbed
frequency ν has a single intersection (one stable solution) for C < 1, whereas
for C > 1 the three intersections (two stable and one unstable), reveals the
system is perturbed by the ECR.

ω0 = k0c = unperturbed frequency; (λ0 = 1.55 µm),
Jη = pumping current density, and,
η = internal quantum efficiency,
d = active layer thickness,
V = active volume = 8·10−17 m3 .

In the small perturbation regime (K % 1), we can solve ana-
lytically the L–K equations for the amplitude ∆E and frequency
∆ν deviations from the unperturbed values, and obtain the cos
and sin dependence on 2kL of AM and FM signals [3], [8], [11]:

∆E/E0 = K(τ p/τin)cos 2kL (4)

and

∆v = −(1 + α2)1/2(K/τin )sin(2kL + atanα). (5)

Interesting to note, (5) also explains why the linewidth of
the perturbed laser is narrowed or broadened depending on the
phase of the sine term, i.e., Φ = 2ks + atanα, as described in
the region I of the T–C diagram.

Letting ∆ν = ν − ν0 and k = 2πν/c in (5), we obtain a
relationship of unperturbed ν0 versus perturbed ν frequency of
oscillation, and Fig. 6 is the corresponding diagram, also called
Adler’s diagram because it applies to a very general scheme of a
Van der Pol oscillator perturbed by a delayed replica of its own
output.

Also, Adler’s equation is equivalent to the three-mirror de-
scription of the laser feedback scheme, when we write the bal-
ance of field at the output mirror [8], [12], [13].

As we can see in Fig. 6, as far as the coupling is small
(C < 1), there is only one solution for ν (a stable, single oscil-
lating mode). But, at increasing C, the undulation increases in
amplitude and for 1 < C < 4.6 there are three solutions, one
unstable (the central one) and two stable, called the external
cavity modes [8], [15]. At even larger feedback we get 5, 7, . . . ,
n = 2 C/π modes, asymptotically. This corresponds to region II
of the T–C diagram.

A few more results can be derived analytically from the L–K
equations, e.g., threshold current, power-to-current slope, self-

Fig. 7. Sketch of the evolution of dynamic regimes as a function of feedback
factor K : self-mixing regime at weak feedback, periodicity and multiperiodicity,
chaos and opening closing bifurcations up to the final state of oscillation on the
external reflector.

mixing waveforms, and high frequency (or modulation) cutoff,
etc., but in general most of the high-level dynamic regimes of
oscillation can only be studied through numerical simulation of
the equations.

The numerical study unveils a number of complex dynamical
regimes encountered at increasing K, like bifurcations, period-1
and multiperiodic solutions, chaos, until at high K (approaching
unity) oscillation is set by the external cavity.

Experiments nicely confirm [2]–[4] all the theoretical results,
with just one adjustment necessary: the already mentioned in-
troduction of the α-factor, in (3), to reconcile experimental
linewidth with the theoretical value [13], [14], [34].

Much the same evolution of E as in Fig. 7 is found also
at other values of distance L. Exact positions of regimes and
bifurcation appearance may change when parameter values are
varied, but much the same character is found along a wide range
of external reflector distance.

One thing is different at small L < Lf 2 , less than the length
equivalent Lf 2 = c/2 f2 of the cutoff frequency of laser mod-
ulation f2 : the oscillation regime is dependent upon the phase
of the external path length, Φ = 2k0L (mod 2π). So, as L un-
dergoes a change of a wavelength, the regime may change from
self-mixing to period-1 to chaos and back [3], [12], [16]. A third
variable, phase Φ, should then be introduced in the diagram of
K and L to completely describe the system. This circumstance
brings about the classification of external cavity and associated
regime in short, when L < Lf 2 , and long, when L > Lf 2 . For
a long cavity, no dependence on Φ (mod 2π) is observed [12],
[13].

Another distinction is about feedback coherence. As long as
we have L < Lcoh , where Lcoh is the coherence length of the
unperturbed laser, the regime of interaction is coherent.

In a semiconductor laser, however, also an incoherent return
from L > Lcoh is able to deplete the state concentration N
[last term of dN/dt in (3)] and drive the system into the high-
level dynamics with multiperiodicity and chaos, though less
efficiently than a coherent return. In addition to a far-away return
(L > Lcoh), incoherent feedback can also be generated by back
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reflecting in the cavity a 90◦-rotated linear polarization state
[20].

In the regime diagrams, we have, therefore, two noteworthy
distances: Lf 2 the break point of short-to-long cavity, and Lcoh
the boundary of coherent versus incoherent feedback.

IV. DESCRIPTION OF STRONG FEEDBACK: CHAOS

On increasing the K factor over a certain threshold, the system
is driven into a strong interaction characterized by the generation
of sidebands that gradually increase in amplitude and number
(periodicity and multiperiodicity regimes) until they fill up all
the spectrum around the carrier (chaos). These regimes are em-
ployed in modern applications of high-level feedback, such as
chaos generation and synchronization for optical cryptography,
microwave frequency-domain applications, and random number
generation.

First question to be considered is the boundary of weak ver-
sus strong interaction regimes. Several papers [16]–[19] have
proposed different criteria to assess the boundary, like linewidth
analysis, stability of the L–K equations and Lyapunov’s ex-
ponent. Though findings differ somehow, yet they allow to
draw some generally valid conclusions about the “unperturbed”
regime, by means of three regions in the K–L diagram, as
follows. At large feedback (K up to ≈ 10−1), it should be
f2τext < 0.1–0.2 (or, L < 0.1–0.2 Lf 2); at intermediate strength
of feedback, we shall stay at C < 1; and at weak feedback
(and L > Lf 2) we should keep K < ≈2·10−4 (or −74 dB).
The asymptotes corresponding to these conditions are plotted in
Fig. 8 as dotted lines (the last after a scale break).

Actually, as discussed in a recent paper [6], the unperturbed
condition is never reached, because the self-mixing regime is
found everywhere in the K–L diagram. We can say that retrore-
flection leaves the laser source “unperturbed” only by reference
to a specific condition, like e.g., limited linewidth broadening
as assumed in early works [1], [2], [16]. Indeed, when the self-
mixing FM modulation term sin 2kL is small and concealed in
the natural frequency line, we can take the source as “unper-
turbed” from the engineering point of view [6]. This happens
when the sidebands created by the self-mixing FM are less than
say, ∆ν ≈ 10 MHz, from the optical carrier. Yet in this case, un-
noticed in early work, a small amplitude dependence of E from
cos 2kL still remains, however of the order of −60 to −40 dB
(for K = −40 dB or less). The level is small enough to be neg-
ligible if the laser is used as a transmitter in communications,
while it is well revealed and readily useable in interferometry
and echo detection [8].

At higher K, the frequency of sidebands ∆ν rapidly increases
up to gigahertz and tens-of-gigahertz range, always and only as
a self-mixing AM and FM effect excluding any randomness in
E and φ, and multiperiodicity and chaos effects.

Thus, we suggest the following nomenclature to distin-
guish the two cases: weak self-mixing regime (for the quasi-
unperturbed state), and strong self-mixing regime for sizable
AM and strong FM sideband generations. These add to the
well-known cases of periodicity, multiperiodicity, and chaos.

Fig. 8. T–C diagram revisited, across regimes III, IV, and V. Dotted lines are
the boundary of “unperturbed” operation, below which only a weak self-mixing
interaction takes places, with unnoticeable linewidth broadening. The asymptote
at −74 dB is included in the diagram after a Y -scale break. Another scale break,
on X -axis, is used to accommodate Lcoh . Increasing K and staying at small
L, beyond region III, we find an island of chaos and multiperiodicity. At these
short (L < Lf 2 ) external cavity, the regime is dependent on optical phase φ =
2kL (mod 2π), and it changes from unperturbed (self-mixing) to period-1, to
multiperiodic, and chaos, with just a small variation of φ. The diagonal thin
line in the island gives the relative proportion of chaos and multiperiodicity
(mp). On the left side, the island is almost tangent to the unperturbed vertical
asymptote (dotted line), and on the right side merges with the fully developed
chaos at a length L ≈ Lf 2 . All around the island, there is a sea of self-mixing
regime, this time with sideband frequency in the gigahertz and up to several
10-GHz range. Above the island, we find triangular stripes of multiperiodicity
and chaos, φ-dependent, which increase in width as L increases and finally
merge to the right into the chaos area (thin dotted line). At still higher L, starting
from about Lf 2 , we enter a broad area of long-cavity, phase-independent and
fully developed chaos. Above about –5 dB, chaos ceases because the system
oscillates on the external cavity. Starting from distances of the order of the
unperturbed coherence length (L ≥ Lcoh ), the system exhibits self-locking and
unlocking in frequency due to the reflected waves, and bistability in amplitude.

Now, let us consider the upper part of the T–C diagram (see
Fig. 8), and go across regions III, IV, and V. At the left side of the
diagram, when the external cavity length is small (L≈ 0.1Lf 2),
on increasing K of about 10 dB with respect to the C = 1 bound-
ary, we encounter a first island of chaos and multiperiodicity, as
described in [6].

We call it first island because it is surrounded by self-mixing
(down to the boundary of the long cavity case). Inside the island,
the regime of oscillation depends on the optical phase Φ = 2k0L
(mod 2π) because the cavity is short, and oscillation swings
from period-1, to multiperiodic, and chaos, upon just a small
variation of Φ.
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Of course, we cannot represent the phase-dependent evolution
in the K–L diagram of Fig. 8, but in [6] the reader can find the full
sequence of waveforms on a 2π cycle for several combinations
of parameters K,L, α.

As we move to increased length L, the corresponding K
decreases (of about 20 dB/decade) down to about −40 dB, the
boundary of T–C region III.

Meanwhile, the relative occurrence in a 2π Φ-cycle of chaos
and multiperiodicity is changed, with the chaos proportion in-
creasing steadily up to fill all the available phases. This is (par-
tially) rendered by the thin line running in diagonal in the island.
When we reach L = Lf 2 in the island of Fig. 8, the regime is
only chaotic, and becomes phase independent, a well-known
feature of long external cavity.

Going above the island, we first return to self-mixing regime
for a certain range of K values, then, we encounter a number of
triangular stripes. These are regions of chaos and multiperiodic-
ity depending on phase Φ, in addition to K and L, and have been
described in [6] and [19]. The stripe width is constant across the
K-Φ plane, while it increases almost linearly with L and α.

Therefore, in the K–L diagram of Fig. 8, the stripes are trian-
gle shaped and placed along a diagonal. They encompass chaos
and multiperiodic oscillation, and are separated by strong-self-
mixing regime, with frequency of sideband ranging from several
gigahertz up to several 10 GHz. Inside the stripes, we find again a
proportion of Φ-dependent chaos and multiperiodicity, increas-
ing from left to right (as indicated by the thin line inside the
stripes) and becoming all chaotic as we approach the base of the
stripes, at L = Lf 2 . Here, the chaos becomes phase insensitive
and we have only chaos oscillations in an uninterrupted wide
range of K and L.

All the regimes plotted in Fig. 8 are for a linewidth enhance-
ment factor α = 3. For other values, from 1.5 to 6, the general
description of Fig. 8 still holds. Details (width and number, pro-
portion of chaos, and periodicity) of stripes actually depend on
the alpha factor and, in general, with the increase of α the stripes
move left or, at constant L, they become thicker and the chaos
proportion increases.

At still higher values of K, the chaos regime is suppressed
because the system sees an external cavity strong enough to
sustain oscillation on its own (see Fig. 8).

Till now, we have tacitly assumed a condition of coherent
superposition for the returned field. However, also the case of
incoherent feedback interaction is interesting.

An incoherent return actually affects the mode oscillating in
a semiconductor laser, because the square-field term E2 in the
last L–K equations [see (3)] depletes the state density N .

Incoherent superposition is found when the return is from a
distance L > Lcoh , or when the reinjected mode is orthogonal
to a preexisting, in-cavity mode. One way to obtain an orthog-
onal mode is rotating the state of polarization of returning field
by 90◦. Ju and Spencer [20] have studied polarization-rotated
feedback, which obviously is independent from distance L and
phase Φ. At levels of K high enough, they found regime of
chaos, self-pulsation, and two-state oscillation. Clearly, no self-
mixing regime can be found in incoherent feedback, and at very
low K the source is now really unperturbed.

From the point of view of applications developed using high-
level dynamics, probably the most actively pursued in recent
years, internationally, has been chaos cryptography [3], [4], [12],
[21]–[23]. This is a technology based on two fundamental prop-
erties of coupled systems: 1) operation in the chaos regime; and
2) synchronization of matched chaos-generating systems.

In principle, we can use either a DOF (single-source system)
or an injected coupled laser (ICL, double-source system) to
generate chaos [12], but of course the former is preferable from
the engineering point of view, because it uses fewer components,
is easier to integrate into an integrated photonic circuit (IPC),
and does not require two generally tightly matched lasers.

So, the T–K diagram is the adequate means to represent the
area of operation of DOF-based systems for chaos cryptography.

The integrated IPC versions of DOF are usually positioned in
the upper left corner of the fully developed chaos in Fig. 8. This
is because we prefer to incorporate the delay-path L external to
the laser as a drift-zone waveguide in the integrated chip, and
therefore we wish to keep L as short as possible [24], [25].

A fully developed chaos is found the best for a good synchro-
nization, and thus L will span from Lf 2 (=30 mm from Fig. 8,
eventually up to 100 mm, adjustable with the laser bias current),
to perhaps a maximum of 3–5 times as much. Considering a
nin = 3.5 as the effective index of refraction of the waveguide
semiconductor material, we will take the guide length Lg in the
range Lg = 10 to 50 mm.

About the K factor, in the IPC, we may use either a cleaved
facet for the reflector (r3 = 0.55 typically) or have the end-face
multilayer coated for maximum reflectance and hereafter add an
absorber section along the path for the user to trim reflectance.
So, the K factor can range from 0.3 to 0.8 in practice.

In Fig. 9, the region covered by IPC versions of chaos DOF
for cryptography applications is shown.

Discrete components DOF can work on a somehow wider
range of K and L (down to the boundary of regions III and
IV and up to Lcoh in Fig. 9), but size and microphonics effects
make them unattractive, after the IPCs have been developed.

Chaos applications to random number generation share much
the same area of operation of cryptography and, though rela-
tively recent, can be developed already with specialized IPCs
[26], [27].

To attain a high degree of randomness, Sunada et al. [27] used
an optical-amplifier (OA) boosted ring to return to the laser. The
OA compensates the waveguide losses and achieves a net K =
9.5% coupling coefficient on the long (ninLg = 41 mm) external
path. Argyris et al. [26] use a conventional F-P external cavity
of ninLg = 36 mm and obtain a coupling K = 1.6–3.3% that
allows to generate a 140 GB/s random data stream.

Other applications of high-dynamic DOF systems are related
to microwave tone generation [12], utilizing the period-1 regime;
this was the original proposal of Hwang et al. [28], based on an
ICL scheme. The frequency range covered can span from a few
gigahertz up to several times the modulation cutoff frequency
f2 .

Further, some applications of chaos to instrumentation have
been reported. One is the extension to very high C regime
of the basic self-mixing principle [29] (see Fig. 9), by which
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Fig. 9. Preferred areas of operation for some applications using the regimes
of Fig. 8: chaos cryptography by DOF (dashed area) random number generation
(thin-dot line), microwave tone generation, chaos-based SMI vibrometry, and
external cavity frequency stabilized laser.

a demodulated waveform Φ = 2kL is obtained in place of the
normally expected sin Φ. Another proposal [30], [31] is a hint to
use a chaos to remove the range ambiguity of the conventional
sine-wave modulated telemeter [11], checking the maximum
of the autocorrelation function to determine distance; for this
feature, the best area of operation is again that of the random
number generation.

Last, an application indicated in Fig. 9, though related to
suppressing chaos, is the one based on the regime of external
cavity oscillation (see the top right corner in Fig. 8) to possibly
develop a narrow-line, frequency-tunable laser [32]. This is of
course a variant of the well-known external-cavity scheme, the
design of which usually starts with a reduced reflectivity r2 (or
an ARC output facet) and a grating as the external target. A three-
mirror approach allows us to take account of the nonvanishing
reflectivity r2 , and use uncoated chip as the source.

V. CONCLUSION

We have shown that the well-known T–C diagram of feed-
back effects is nowadays enriched by a number of interesting
phenomena, reported in the literature as the outcome of ex-
tensive experiments and simulations that lead to new applica-
tions of the high-level regime of coupling or self-coupling in
laser diodes. Chaos cryptography and self-mixing interferome-
try are already established rather well, and others (random num-
ber, microwave tone generation, and ranging) are more recent

and open the perspective of important new and groundbreaking
applications.
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