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Abstract

In this paper, we first introduce mutual and self-coupling and related phenomena in laser diodes, and

discuss how the chaos paradigm has been unveiled as a refinement of classical Adler’s locking equation

describing coupling. Then, we take the ICL (injected coupled laser) system as a reference and illustrate the

newly found regimes of injection modulations, labile locking, periodicity and multiperiodicity, chaos,

opening and closing bifurcations, up to the final locking of the system. Analysis is carried out by Lamb

and Kobayashi equations, in good agreement with experiments. The concept of synchronization is then

developed and schemes devised to implement it on an ICL system are discussed. We then show that two

cryptography schemes easily follow from synchronization, namely CM (chaos masking) and CSK (chaos

shift keying), and describe some implementations of them as well as the results of a sensitivity analysis.

After that, we broaden the range of applicabilı̀ty of coupled phenomena showing they are robust against

change of parameters and configurations. As a preferred, minimum part-count scheme useful for

engineering implementation, we then introduce and evaluate the DOF (delayed optical feedback)

configuration, basically a self-mixing scheme operating at a high level of (self)-coupling. For the DOF

system, we run through the paradigm of high level dynamics, synchronization and cryptography variants

(CM and CSK) again, and find that this system is well suited to all application criteria. We describe

practical and in-field implementation of cryptography schemes, CM as well as the PIC (photonics

integrated circuit) devices reported so far. A system analysis is then presented, with a summary of

experiments on variants of basic cryptography scheme, and some general considerations about

cryptography codes and robustness. Finally, we briefly digress to illustrate the recent field of non-

cryptography applications of optical chaos systems, such as random number generation, distance

measurement, and microwave photonics.
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1. Introduction

High-level dynamics in coupled lasers provides a rich phenomenology and a wealth
of applications, ranging from cryptography to microwave photonics and instrumentation.
A coupling regime is found whenever a laser source injects part of the emitted field into
another laser, or back into its own cavity. Coupling gives rise to a rich variety of
phenomena, conceptually interesting as they unveil new and unexpected behavior of the
optical system, but is also important to engineering for the many applications enabled.
For example, at the weak level of interaction, self-coupled lasers are the starting point

for self-mixing interferometry, a new method for measurements of optical phase shift as
well as of field amplitude—the subject of a recently published review [1].
At the high level of interaction, the coupled-laser system displays a number of new

interesting regimes of operation, ranging from induced modulation, to locking and unlocking,
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to periodic and multi-periodic oscillations and to chaos, featuring alternate switching between
regimes and opening and closing bifurcations, until, at still higher levels of injection, the
coupled system reaches the final locking stage.

This is the subject of this review, which focuses on diode lasers as the specific source
because they are best suited to applications, though the very general nature of coupling
phenomena makes most of the findings and conclusions also applicable to other laser types
and to non-optical oscillators as well.

In general, we obtain coupling when a small fraction of the field is injected into the laser
cavity, either from a physically different laser or from a delayed portion of the laser field
itself, as shown in Fig. 1.

Coupling phenomena have attracted interest since the early days of laser discovery, the
first to study them being the Nobel Prize laureate H. Lamb, Jr. and M.B. Spencer, who
published in 1972 two seminal papers describing both the three-mirror laser (or self-
injection) [2] and the mutual (two sources) injection case [3].

They carried out an analysis based on the slowly varying approximation of field
amplitude E and phase f of the oscillating field, what we call today the Lamb’s equations
of the laser. Lamb’s equations are well suited to Class A lasers (see Ref. [4], and below)
such as gas and crystal lasers, in which E and f are decoupled from the density of state N,
whereas in a semiconductor laser (class B) we shall add a third equation to describe N (the
carrier concentration) and its dependence on E and f, yielding the modified Lamb
equations also known as the Lang and Kobayashi (L–K) equations [5]. Despite the
difference, interestingly the main results found with Lamb’s equations at weak injection
still hold and correctly describe low-level coupling phenomena for Class B lasers, including
the semiconductor laser diode.

A first classification of coupled systems is based on the type of coupling, either mutual-
coupled or self-coupled (Fig. 1). Mutual-coupled systems are the paradigm of oscillator
synchronization and may be symmetrical (same coupling in both directions) or
asymmetrical (different coupling, and a master/slave system when an optical isolator is
inserted between sources).

Another classification is in according to the strength of coupling. We say coupling is
weak, when the perturbing field brought back into the laser cavity is a fraction, say, down
to about 10�9 and up to 10�2, of the pre-existing field power. The 10�9 level tells us that
coupling schemes are very sensitive to even minute retro-reflections of externally injected
fields. This is well known practice in experiments with, e.g., frequency-stabilized lasers or
optical-fiber communication transmitters, where we need to defend the laser from
returns with a high-performance optical isolator to avoid spoiling the frequency stability
or corrupting the amplitude with excess noise. Analysis shows that the sensitivity of

Fig. 1. Schematic of coupled lasers. Top: mutual coupling (can be symmetrical or asymmetrical); bottom: self-

coupling.
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mutual- and self-coupled oscillators to external injection—in the sense of minimum signal
detectable or affecting performance—is down to the level of quantum noise associated with
the power P of the oscillating field, both in amplitude (power pmin¼ [2hnBP]1/2) and phase
(fmin¼ [P/2hnB]1/2), see Refs. [7,8]. This is because the process of interaction with the in-
cavity field is coherent, similarly to homo- or hetero-dyne detection [8].
In the weak regime of self-coupling, the main phenomenon observed is amplitude (AM)

and frequency (FM) modulation of the oscillating field. The driving term (or modulation
index) is the product of the fraction of the returned field and the cosine (or sine) of the
optical phase shift 2ks (k¼wave vector, s¼distance) external to the perturbed laser. This is
the case first studied by Spencer and Lamb [2], the configuration that has opened the way
to the development of self-mixing applications like interferometers and very sensitive echo-
sensors [1].
Self-mixing modulations are easily explained as the result of a rotating-vector addition,

shown in Fig. 2. Let E0 be the unperturbed cavity field, and aE0 exp i2ks the field back
from the target, a being the (field) attenuation and 2ks the phase delay of propagation. As
known from communication theory, rotating vector addition generates an AMmodulation
driven by the in-phase component of the modulating term, that is aE0 cos 2ks, and an FM
driven by the in-quadrature component, or aE0 sin 2ks. One point is that, while the AM
signal is readily available from the power detected by a photodiode, FM is difficult to
retrieve because it is impressed on the optical frequency (and we need a frequency down-
conversion to detect it, see e.g. Ref. [1]).
Also in the weak regime of mutual-coupling we find AM and FM in the field of each of

the two interacting lasers, and the driving terms are now the ratio of amplitudes and the
frequency difference [6]. The coupled system can then be regarded as a special coherent
detector receiver, also known as an injection detector [7].
Weak coupling phenomena are observed in all laser sources, including class A lasers [4],

that do not exhibit chaos. As a consequence, while applications to measurements of
amplitude and phase are feasible and have been demonstrated in a variety of class A and B
lasers [1], chaos and high-level dynamics applications will require a class B laser (e.g., a
semiconductor diode laser). Class C lasers are already chaotic on their own, but are poorly
controllable.
Semiconductor diode lasers are intrinsically stable when operating in a stand-alone,

unperturbed condition, but will become chaotic when coupled or self-coupled with sufficient
strength. The coupling factor is thus the very convenient parameter to control the behavior of
the system at a high level. And, from the practical point of view, semiconductor diode lasers
are the preferred choice because of their well-known advantages of small size, low power
consumption, batch fabrication, and match of parameters.

Fig. 2. Describing self-coupling with the aid of the rotating-vector model, it is easy to see that the in-phase

component is responsible for AM, and is proportional to cos 2ks, whereas the in-quadrature component is

responsible for FM and is proportional to sin 2ks.
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Going back to classification, we say coupling is strong when the exchange is a fraction up
to a few percent of the pre-existing oscillation power. Even at this apparently modest level
of injection, the AM and FMmodulations become so strong that they drive the laser out of
a reproducible regime of oscillation, and the system enters a non-linear high-level dynamic
regime, both in mutual- self-coupling cases, characterized by new and unexpected
behaviors such as bifurcations, multi-periodicity and chaos in mutual-coupled systems,
and relaxation oscillations, bi-stability, multi-stability, and chaos in self-coupled systems.

This regime is special in the sense that its evolution cannot be predicted by knowledge of
the constitutive equations and initial conditions — the system ceases to be deterministic in
a strict sense, and exhibits multiple solutions and a pseudo-random behavior of its state
variables.

This is just the incipit of a paradigm heralding a complex system, in which evolution is
determined by new laws specific to a higher level of organization whereas the lower-level
laws cease to be significant [9,10].

Yet, the high-level dynamics can still be described by a small-perturbation analysis
around the quiescent point of the unperturbed state, because the level of coupling (or, the
factor multiplying the new perturbation terms in the constitutive equations) is small, about
a few percent (or less) as mentioned above. Thus, fortunately, the L–K equations still
apply under strong level conditions and become the appropriate tool to describe the
observed complexity and chaos regimes [11,12].

The regimes of strong coupling and the development of new techniques like optical
chaos generators, chaos masking, synchronization, and chaos-cryptography systems are
the subjects covered in this paper, which is organized as follows. In the next Section, we
introduce basic ideas underlying strong coupling dynamics and summarize the methods to
analyze it. In Section 3, we develop the applications of chaos-based systems to a variety of
cryptography systems. In Section 4, we describe experiments and in-field evaluations of
prototype chaos communication systems, and the development of integrated photonics
chips for chaos generators. In the final Section, we summarize the dawning applications to
communications and signal processing, and finally we draw some conclusions.

2. Laser injection dynamics

The laser injection scheme reported in Fig. 3 is perhaps the simplest system representative of
the high-level dynamics paradigm and the first studied since the 1980s to unveil chaos
phenomena in lasers [13].

Fig. 3. The paradigm of high-level dynamics is unveiled by the basic scheme of injection, a particular case of

mutual coupling becoming asymmetrical with the interposition of an isolator between the external source (master)

and the receiving source (slave). When oscillators are electronics and the signal E is a scalar, we obtain the case

studied by Adler which leads to the locking theory. With laser oscillators, the system is a prototype for optical

chaos generation.
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Also known as an ICL (injected coupled laser), it is a mutual asymmetric coupling
scheme, consisting of a master and a slave oscillator, with an optical isolator to allow
signal transfer in the direction from the master to the slave, and with the master source
slightly offset by Dn in frequency with respect to the slave. The strength of coupling is
defined by the ratio Es/E0¼K of the injected (master) to unperturbed (slave) fields. To
study the regime, we will let K vary from the unperturbed condition (very small K) up to
the largest value of interest, corresponding to the final event of locking the slave laser to
the master oscillator frequency.

2.1. The paradigm of high-level coupling phenomena in injected coupled lasers (ICL)

Actually, up until about the 1970s, the injection scheme (Fig. 3) was the reference to
study locking and frequency attraction phenomena in conventional oscillators—those
employed in radio engineering and made up of an active electronic component and a
narrow-band resonator arranged in a regenerative feedback loop, so that when the circuit
breaks into oscillations, the frequency is tuned to the resonator response.
Describing the oscillator by a second order differential equation and analyzing injection

under a small-signal perturbation assumption, Adler found in 1946 [14] the well-known
equation governing the phase of the slave oscillator (see also Appendix A1). Results are
expressed in terms of the reduced phase f of the complex signal, written as E0 exp iF,
where F¼2pf0þf is the total phase. The equation is as follows:

df=dt¼Aþ Bsin½f�fs�: ð1Þ
Here, A is the unperturbed frequency difference (Dn in our notation, the steady-state
frequency df/dt of the unperturbed system), B¼gEs/E0 is the injection-induced
perturbation, g is the rate of coupling, and fs is the phase added to Es in the injection
process.
Solutions of Adler’s Eq. (1) are the well-known milestones of oscillator injection theory,

and they bring about:

(i) frequency attraction at small or moderate coupling strength [i.e., df/dt¼ (A2�B2)1/2];
(ii) injection modulations in frequency (see Ref. [15] for expressions of FM);
(iii) frequency locking at BZA [with df/dt¼0 and phase pinned at f¼arcsin(�A/B)þfs].
Also, solutions hint at:

(iv) injection detection, because the modulation components generated by injection are
larger than the input signal (with a gain 1/2(B/A)

2Es/E0, see Refs. [7,8]).

Interestingly, Adler’s Eq. (1) also holds for class A laser oscillators in the Lamb’s
equations approximation, as derived in Ref. [15], and is easily adapted through minor
variants to the other case of mutual coupling, that is, symmetrical coupling [15]. In
addition, both in the 3-mirror model and in the L–K approximation, it is shown to apply
for the total phase F¼ot also in the case of self-injection (or self-mixing scheme); see
Eq. (4d) of Ref. [1].
Thus, up through the 1980s, all we knew from the Adler theory was that, at increasing

coupling strength, modulations of the slave oscillator first appear in amplitude and
frequency, with some frequency attraction, and then an inexorable final locking of the
slave oscillator that follows at a certain level of coupling.
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In subsequent years, it was found that, for some electronic oscillators as well as for class
B lasers, the injection scheme does not have just a single locking. After the first locking,
increasing the coupling strength de-locks the slave oscillator and begins generating sub-
harmonic frequency waveforms, passes through bifurcations, followed by the chaotic
regime, then back to sub-harmonics alternating between chaos and bifurcations until, at a
much larger coupling strength than the initial, the final locking is reached.

Study of injection scheme dynamics is carried out with the L–K equations [16] for
amplitude E, phase f and the density of states N of the slave laser, in the injected scheme
with input field Es and (initial) frequency difference Dn. They are written in the following
form [17]:

dE=dt¼ 1=2½GNðN�N0Þ�1=tp�E þ ðk=tÞEs tð Þcos½2pDntþ f tð Þ�fs tð Þ�
df=dt¼ 1=2 afGNðN�NthrÞ�1=tpg þ ðk=tÞEs tð Þ=E tð Þsin½2pDntþ f tð Þ�fs tð Þ�
dN=dt¼ JZ=ed�N=tr�GN ðN�N0ÞE2 tð Þ ð2Þ

where (with typical values noted) GN is the modal gain¼8.1� 10�13 m3 s�1, k the fraction of
field Es coupled into the oscillating mode, N the carrier concentration (m�3), Nthr the carrier
concentration at threshold¼2.5� 1024 m�3, N0 the carrier concentration at inversion¼
1.2� 1024 m�3, t the round trip time of slave laser cavity¼2nL/c¼5 ps, tp the photon lifetime
in cavity¼2 ps, tr the carrier lifetime¼5 ns, a the linewidth enhancement factor¼3–6, J the
pumping current density, Z the internal quantum efficiency, and d the active layer thickness.

The L–K equations are point-independent equations describing the active material.
Though quite different from other system-based equations describing the oscillator, they
yield all the results found with other approaches, including Adler’s equation [1]. When
compared to experiments, the L–K equations are found to provide remarkably accurate
modeling of both weak-level self-mixing phenomena and high-level chaos-related
dynamics. The only deviation is a larger than predicted linewidth of oscillation, reconciled
with experiment, as first proposed by Henry [18], with the introduction of an a-posteriori

linewidth enhancement factor a in the L–K equations, on the second line of Eq. (2), with
typical values between 1.1 and 6 [19].

Concerning the structure of the L–K equations, we see that nonlinearities are already
present for k¼0 (unperturbed laser) with terms of saturation GNNE and depletion of states
GN(N�N0)E

2. Yet, these terms are not sufficiently strong to promote chaos, and, indeed,
the semiconductor (single mode) laser is a class B laser inherently stable in standalone
condition. It is when k becomes large enough that the new term Escos f drives the laser out
of the deterministic regime, into chaos oscillation.

Indeed, the laser constitutive equations are similar to the equations of atmospheric
turbulence found by Lorenz, as originally pointed out by Haken in 1975 (see the discussion
of Ohtsubo in Ref. [11]).

From Eq. (2), the quantities E, f and N are computed numerically, using the standard
Runge–Kutta method to integrate the time derivatives on a sufficiently small time
interval step. The parameters governing system evolution are the coupling coefficient
K¼Es/E0, and the frequency offset Dn. In a typical simulation [17], we may start with
0.01-ps steps and assume initially a constant value for Dn (e.g., 360 MHz), while K is varied
from 0 to 0.1.

As the characteristic quantity describing the system behavior, we take the beating signal S

S¼EsE0 cosð2pDntþ fÞ ð3Þ
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observed at a photodetector that receives the superposition of E0 and Es. [In fact, the
photodetected current is S¼sP in terms of the average optical power P and of the spectral
sensitivity s; as P¼A/9EsþE09

2S/Z0, where A is the detector area and Z0 is the vacuum
impedence. On developing the square modulus, we find S¼ (sA/Z0)[Es

2þE0
2þ2EsE0

cos(2pDntþf)] whence Eq. (3) follows when the constant terms Es
2 and E0

2 are dropped].
Four representations are commonly used to visualize the trend of signal S:

(i) the amplitude portrait, i.e., the modulus ISI of the beating signal versus coupling the
strength K;

(ii) the time series, that is, the time-dependent waveform of S(t);
(iii) the (electrical) frequency spectrum of signal S;
(iv) the state diagram, that is the graph of S versus dS/dt.

Now let us illustrate the results of simulations [17] of the injection system (Fig. 3)
predicted by the L–K equations (Eq. (2)).
The amplitude portrait is shown in Fig. 4, after normalization to the unperturbed value.

First, there are changes of amplitude from the unperturbed condition to that of high K.
Second and specific to strong coupling, we notice bifurcations at certain values of K, where
the amplitude may undergo either an increasing or a decreasing evolution. The choice of
which path is followed critically depends on the initial values of the variables, with a fine
intermixing on the decimal places of variables deciding the result of evolution. Regime is
here periodic or multiperiodic, with creation of sub-harmonics of the beating frequency Dn.
At even larger K’s, we see that amplitude can vary widely, the sign of chaotic behavior.

Chaos and multiperiodicity will alternate for a range of K values, until the system goes
through closing bifurcations and reaches a final locking.

Fig. 4. Evolution of the amplitude of the beating waveform EsE0 as a function of the coupling strength K. Several

regimes are encountered between the first locking at K¼0.0006 and the final locking at K¼0.027: periodic and

multiperiodic solutions and chaos, as well as opening and closing bifurcations. Waveforms, frequency spectra and

state diagrams for each regime are reported in Figs. 5–10.
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We can illustrate the regimes at increasing K, looking at the corresponding time series,
frequency spectrum and state diagram:

– at K¼0 to 0.0001 (interval u in Fig. 4), the regime of unperturbed oscillations, the time
series is a sinusoid, the frequency spectrum is a line at the detuning frequency Dn, and
the state diagram is a circle (Lissajous curve for x¼cos 2pDnt and y¼sin 2pDnt), see
Fig. 5.

– at K¼0.0001 to 0.0006 (interval a in Fig. 4), see Fig. 6, interaction with the injection
signal produces a weak modulation regime [15] characterized by distortion of the beating
waveform. The waveform becomes increasingly peaked, with the production of integer
harmonics (n¼2,3,4y) of the beating frequency Dn; the state diagram accordingly
becomes distorted, but remains a single loop curve [15]. This regime is common to
He–Ne (class A) as well to semiconductor diode (class B) lasers. Experiments match
very well with theory [15] (see also below).

– at KE0.0006 to 0.0014 (b in Fig. 4), we reach the first locking. The beating waveform
disappears (Fig. 7). But, different from plain oscillator theory, we have not reached the
final stage of the evolution, because then,

– at K¼0.0014 to 0.0051 (c in Fig. 4), the system exits from the locking condition, and it
generates a periodic waveform, peculiar of the high-level dynamics because its signal now
contains a sub-harmonic (n¼1/2) of the beating frequency. This is visible in the time
series (Fig. 8) and, more clearly, in the frequency spectrum; the state diagram has now a
characteristic double loop.

– at K¼0.0043, we observe a first bifurcation and at K¼0.0051, a second bifurcation.
– at K¼0.0051 to 0.0058 (d in Fig. 4), we obtain the multiperiodic state, with more
subharmonics (n¼1/2, 1/3, 1/4,y) with respect to the point c case, and more loops in
the state diagram (Fig. 9). Creation of sub-harmonics is highly characteristic of the
complex system, or chaos regime, because no (memoryless) nonlinearity in amplitude
can generate them - ordinary distortion produces harmonics, not sub-harmonics.

– at K¼0.0058 to 0.0066 (e in Fig. 4), we finally find the chaos regime. The time series
waveform is erratic, the frequency spectrum is rich with integer and sub-harmonics, and
a state diagram that nearly fills all the available E,E0 space (see Fig. 10). The dotted
vertical lines marking the e region in Fig. 4 indicate the range of the values taken by the
beating amplitude.

Fig. 5. Time series (left), frequency spectrum (center) and state diagram (right) of the beating signal at very small

K (0 to 0.0001) or, in unperturbed conditions (point u in Fig. 4).
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Fig. 6. Time series (left), frequency spectrum (center) and state diagram (right) of the beating signal at small

K¼0.0001 to 0.0006, in the weak coupling modulation regime (point a in Fig. 4). The beating waveform is

progressively distorted at increasing coupling, and several integer harmonics show up in the frequency spectrum;

the state diagram shape is a deformed single loop.

Fig. 7. Time series (left), frequency spectrum (center) and state diagram (right) of the beating signal at K¼0.0006

up to 0.0014 (point b in Fig. 4), when system locks on the external injection and the beating signal disappears.

Fig. 8. Time series (left), frequency spectrum (center) and state diagram (right) of the beating signal at K¼0.0014

to 0.0051 (point c in Fig. 4). This is the regime of periodic solutions, with the characteristic feature of sub-

harmonics of the frequency detuning Dn, and the double loop in the state diagram. The system moves away from

this regime at increased K, but later returns to it three times, in the intervals (points f, i and n in Fig. 4) K¼0.0066

to 0.0074, K¼0.0124 to 0.0140 and K¼0.0174 to 0.027.
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After the chaos regime, unexpectedly,

– at K¼0.0066 to 0.0074 (f in Fig. 4), system returns to a periodic regime, and the
description of Fig. 8 still applies,

– at K¼0.0074 to 0.0116 (g in Fig. 4), system goes back to the chaos regime, and the
description of Fig. 10 still applies,

– at K¼0.0116 to 0.0124 (h in Fig. 4), system enters the multiperiodic regime, and the
description of Fig. 9 still applies.

– at K¼0.0124 to 0.0140 (i in Fig. 4), we return to a periodic regime, and the description
of Fig. 8 still applies,

– at K¼0.0140 to 0.0165 (l in Fig. 4), we find again the chaos regime, and the description
of Fig. 10 still applies,

– at K¼0.0165 to 0.0174 (m in Fig. 4), we again enter a multiperiodic regime, and the
description of Fig. 9 still applies,

– at K¼0.0174 we find a closing bifurcation,

Fig. 9. Time series (left), frequency spectrum (center) and state diagram (right) of the beating signal at K¼0.0051

to 0.0058: the injected signal locks the slave oscillator (point d in Fig.4). This is the regime of multi-periodic

solutions, with the characteristic feature of several sub-harmonics of the frequency detuning Dn, and the multiple

loops in the state diagram. The system moves away from this regime at increased K but it will later return back to

it twice, in the intervals (points h and m in Fig.4) K¼0.0116 to 0.0124 and K¼0.0165 to 0.0174.

Fig. 10. Time series (left), frequency spectrum (center) and state diagram (right) of the beating signal at

K¼0.0058 and up to 0.0066 (point e in Fig. 4). This is the regime of chaos, with the characteristic feature of several

harmonics and sub-harmonics of the frequency detuning Dn, and a lot of loops nearly filling all the space available

in the state diagram. The system moves away from this regime at larger K, but it will later return back to it twice,

in the intervals (points g and l in Fig. 4) K¼0.0074 to 0.0116 and K¼0.0140 to 0.0165.
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– at K¼0.0174 to 0.027 (n in Fig. 4), we go back to a periodic regime, and the description
of Fig. 8 still applies,

– at KE0.027 (o in Fig. 4), we obtain the final locking and the beating waveform vanishes
again as in Fig. 7.

Summarizing the evolution of the ICL system, we find two locking regions, one labile at
a very small level of coupling, K¼0.0006–0.0014, and one strong and final locking region
at K40.027. Below labile locking, there exists an injection modulation regime. Sandwiched
between labile and strong locking we have found regimes of periodicity (P), multi-
periodicity (M) and chaos (C) which occur in turn repeatedly (in the sequence
PMCPCMPCMP for the chosen set of parameters), with three chaos intervals in the
range K¼0.0058–0.027.
Note that we have described regimes in terms of K¼Es/E0, the ratio of field amplitudes.

Correspondingly, the range of fractional powers involved is K2. Thus, the first locking is
found at Ps¼0.4–2� 10�6 P0, the final locking is reached at an injected power of
Ps¼0.73� 10�3 P0 (much higher than labile locking), and chaos is generated in the
three ranges of injected power levels of Ps¼3.3–4.3� 10�5 P0, 5.5–13.4� 10�5 P0, and
1.9–2.7� 10�4 P0 (the last being the preferred because it is the widest), etc.
With regard to the effect of detuning Dn, it was known since the times of Adler’s

equation that the coupling strength Klock required for locking is proportional to Dn because
the locking condition is B¼A (see Eq. (1) and ff), and in our notation A¼Dn B¼Kk/t,
whence Klock¼tDn/k.
Of course, detuning Dn has also influence on the chaos dynamics. Already in the early

papers [17,11] it was verified that some features of the dynamics may actually change with
Dn, like the number of periods of the P–M–C sequence, but basically always with the same
character and distinctive features of each P–M–C regime, as expected from a fundamental
perspective. However, to design a chaos-based system, we need to know more concerning
the effect of Dn on the system.
A detailed map of the high level behavior of the ICL system, in the coupling-detuning

plane (K-Dn), has been computed in [20], by numerical solution of the L–K equations (as
described above, for Dn¼360 MHz), on a grid of values so as to fill the plane of
parameters. Results are illustrated in Fig. 11, and indicate that, for all combinations of K
and Dn values, the dynamics of the P–M–C and locking regions is, indeed, a complete
description of the injection phenomena, because: (i) no new regime is found, (ii) each
regime fills a connected area of the K-Dn diagram with a continuous contour, and finally,
(iii) the general trend found for the single Dn value is also followed by other combinations
of parameters.
These theoretical predictions are confirmed by the experimental evidence provided by the

measurements by Troger et al. [21], reported in Fig. 12. They used an injection scheme like
that of Fig. 3 yet with fiber-guided propagation, with two identical DFB lasers emitting
E2.5 mW at l¼1.3 mm, and a 70-dB optical isolator between master and slave lasers.
In another region, that of injection modulation region below first locking, experimental

results [8,15] obtained with a He–Ne dual-mode laser were found to be in excellent
agreement with theory (see Fig. 13).
Several authors have also published experimental results about frequency spectra and

time-series of periodic, multiperiodic, and chaos regimes, and the interested reader can find
abundant literature on the subject. See, for example, Refs. [11,12,22]. All the results show
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a very good agreement of the calculated and experimental values of waveforms and spectra
(or, at least, of their trends), even on a wide range of values of system parameters. Thus,
we may safely conclude that the L–K equations provide an adequate framework and an
accurate description of injection phenomena.

The only deviation from the L–K linear theory predictions occurs when the power
density in the laser is large enough to excite nonlinear effects in the master and slave fields.
In particular, Brillouin scattering can enhance components close to the central frequency of
the slave laser and widen the line, whereas Raman scattering provides gain at frequencies
far away from the central frequency and can be neglected (but a loss will be incurred).

Four-wave mixing can produce cross-products of the master and slave fields and their
harmonics and sub-harmonics, thus considerably crowding the frequency spectrum.
However, since the power internal to a typical semiconductor laser is below, say, 20 mW,
nonlinear effects will produce small deviations from linear theory, and can be usually
neglected.

Lastly, it is worth reporting that a mutual-coupling, symmetrical injection scheme, the
one we can obtain by removing the optical isolator in the scheme of Fig. 3, exhibits
virtually the same dynamical behaviour as that described above for the asymmetrical case.

Indeed, for a symmetrical-injection, we should duplicate the equations for the two fields
E1 and E2 by re-writing Eq. (2) twice, with E2 and f2 as the forcing terms in the E1 and f1

set of equations, and vice versa for the other set. At small K, the perturbation is small and
the amplitude of the forcing term is nearly constant, thus it is no surprise that solutions are
very close to, and basically share the same trend of, the asymmetrical case of injection.

Fig. 11. Calculated regimes of injection system in the K-Dn plane of coupling factor versus detuning of injected

frequency with respect to unperturbed oscillator frequency. Dotted line is for the results described in the text and

waveforms of Figs. 4–10. (Adapted from Ref. [20], courtesy of IEEE).
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2.2. Interpreting the states of an injected coupled laser (ICL) system

The waveforms generated in the injection process lead to a rich variety of new dynamical
regimes, such as injection modulation, periodic, multi-periodic and chaos, and they can be
thought as a kind of eigenfunctions of the complex system (our injected coupled laser ICL),
not significantly different from sinusoidal oscillations being the free response of an
oscillator based on a second-order resonance.
A question then follows: what if we inject from the external laser the beating waveform

into the ICL? The conjecture is that the system should react by adjusting itself to follow the
dynamical evolution represented by the injected signal, or become synchronized.
Drawing a parallel, we need a frequency not too far from the free oscillation frequency

when attempting to lock a linear second-order (RLC) oscillator. Thus, turning to ICL, it is
reasonable to expect that we need a waveform not too far from the free response generated
by the system to be able to synchronize the ICL, complex system.

2.3. Synchronization of injected coupled lasers (ICL)

ICL synchronization was introduced almost simultaneously by Annovazzi et al. [23] and
Mirasso et al. [24], with papers submitted only a few days apart.

Fig. 12. Experimental results (points) about the injection system regimes in the K-Dn plane of coupling factor versus

detuning. The horizontal scale is for K¼Ps/P0, and the vertical scale is for frequency detuning in GHz. Agreement of the

trend with the results predicted by L–K equations (Fig. 11 and lines) is quite good. (Adapted from [21], courtesy of IEEE).
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To study synchronization [23], let us consider the scheme of Fig. 14, with two identical
ICL systems, system 1 with LD1 and LD2, and system 2 with LD3 and LD4. Both systems
have an isolator for the injection of the master into the slave. The output of system 1
(out 1) is connected to the summation node in system 2, at the input of slave laser LD4.
Furthermore, the output of LD4 is sent in subtraction to the node in system 2. By this
arrangement, when the outputs of LD2 and LD4 differ, system 1 will apply a correction to
system 2 to bring it closer, and when equality is reached (out 2 equal to out 1), no further
correction is applied, and system 2 is thus synchronized and can evolve freely.

To the scheme of Fig. 14, we can apply the L–K equations and compute the evolution of the
output E2 of system 2, starting from an arbitrary quiescent point up to a steady-state solution.
In this way, we obtain the diagram of Fig. 15 where the amplitude error (E2�E1)/E0 is plotted
versus time [23], showing that after a few cycles of oscillation, synchronization is achieved with
a small residual error. Data in Fig. 15 are for a set of parameters that generate chaos (see
Fig. 15 inset) and have K¼0.006. System 2 has also K¼0.006 but starts from an initial
condition E2 far from E1. This was chosen as the most difficult case for synchronization; for

Fig. 13. Experimental (weak) injection-modulation waveforms in a dual-mode He–Ne laser and the corresponding

theoretical results calculated (top to bottom) for K/Klock¼0.3, 0.7, 0.85, 0.90 and 0.97 (Adapted from [15], courtesy of

the IEEE).
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other regimes (periodic, multiperiodic), the error was found to be smaller and to damp out
even faster.
One critical issue is the sensitivity to system parameters. Ideally, in any synchronization

scheme directed to a cryptographic application, small deviations from nominal values of
the parameters (of the laser and of the injection source) should be tolerated, whereas when
a certain threshold for mismatch (for example, 0.5%) is exceeded, synchronization should
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source

optical
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level
adjustm

injected
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system 1
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Fig. 14. Scheme for testing synchronization: two identical ICL systems (LD1/LD2 and LD3/LD4) are used. The

output of system 1 (out 1) is sent to the summation node at the input of slave laser LD4 of system 2. The output of

LD4 is sent to the node in subtraction, so that when out 2 is equal to out 1 no further correction is applied (From

[23], courtesy of the IEEE).
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not be achieved any longer, and the error (E2�E1)/E0 should become the largest possible.
This is the ideal condition represented by the red dotted lines in Fig. 16. For the real
system, the diagram of synchronization error (E2�E1)/E0 is calculated as a function of the
rms error allowed for the parameters used in the L–K equations, and the result is plotted in
Fig. 16 (at left). The effect of gain mismatch (affecting E2 and E1) can also be considered,
as well as its reduction when removed by amplitude trimming or ACG (automatic gain
control), see Fig. 16 (at right).

Changing the injection parameters (K, Dn) or the laser parameters (GN, N0, J, Z, a, tr,
etc.) over a range of reasonable values will affect the curve of Fig. 16, but not drastically its
general trend. As an average of cases, we find that a low synchronization error requires a
parameter mismatch less than �0.2%. On the other end of parameter space, the error is
large and synchronization is lost for a mismatch larger than �0.8%.

Another special parameter affecting synchronization is the distance of the (master)
injected field E1 from the free-running state in the slave system E2. Inside the chaos region,
the distance can be expressed in terms of the corresponding K values. Then, numerical
simulations show that, up to 9K1–K29�0.2%, we obtain a good synchronization (o5%
relative error of field amplitudes), while for 9K1�K2941.0%, the error becomes
unacceptably large (no synchronization).

With regard to the nomenclature currently used in the literature [11,12], authors identify
the scheme with the slave receiving injection only from the master system (our ICL) as an
open-loop configuration, while if the slave also receives self-injection from a remote
reflector (the case of DOF, see Section 3), the configuration is known as closed-loop. But,
as open and closed loop are terms of control theory with quite different meanings, it is
advisable that the terms mutual- coupling (or ICL) and self-coupling (or ODF) system are
used instead.

2.4. Chaos cryptography with injected coupled lasers (ICLs)

A first scheme of cryptography directly follows from the synchronization results of
Section 2.3. The key point is that a high-level dynamics waveform can synchronize a
system tuned not much differently from it, whereas a deterministic signal will be ignored by
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the system because it is far away from the system free response. Thus, we can devise a
chaotic masking (CM) scheme of cryptography.
In the implementation of CM with ICL (Fig. 17), first proposed by Annovazzi et al. [23],

a transmitter ICL is used to generate optical power with a chaos waveform. At the output
node of the transmitter, we sum (incoherently) a small useful signal, a square wave
(message in Fig. 17) to the chaos waveform.
The resultant sum signal out of this node is unintelligible (Fig. 18, left) because the

square wave is masked by a much larger random-looking chaos waveform, both in the time
domain and the frequency spectrum.
The sum signal is then sent down the transmission line (typically an optical fiber) to the

receiver. At the receiver, we use the sum signal to synchronize an ICL identical to the transmitter
(as in Fig. 14). Only the chaos component is effective in synchronizing the slave at the receiver,
and, thus, we obtain a replica of transmitted chaos at the receiver output. By subtracting this
replica from the received (sum) signal, we are able to recover (or decrypt) the message.
The result is shown in Fig. 18, where we can see the time series and the frequency

spectrum of the sum signal (message cannot be detected in them), as well as the result of
the decrypted message [23]. There is some residual ripple due to incomplete cancellation of
the chaos because of synchronization errors, but the quality of reconstruction is adequate
for most application purposes.
The CM scheme actually works, but some drawbacks are readily apparent. First, the

incoherent sum at the output of transmitter node will, in practice, be made using slightly
different wavelengths for the chaos and the message. This opens a door to the eavesdropper,
who can crack the message by fine l-filtering. Using the same wavelength is also not advisable,
because of the resulting optical interference between chaos and message fields.
A second drawback is about amplitudes: if message has to be concealed in the chaos,

and do not disturb the synchronization of the receiver, its amplitude shall be small enough.
So we may require that message amplitude is not more than 1–5% of the chaos amplitude.
This brings about a power-efficiency issue: namely, most of the photons available from

the transmitter laser are used, or better, wasted, in producing the chaos rather than
carrying useful information of the message, and this spoils the SNR of the link.
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Fig. 17. Chaos Masking (CM) cryptography: chaos is generated by an ICL at the transmitter and the optical

emitted power is summed to the optical power of the message. This constitutes the signal sent down the

transmission line. At the receiver, an ICL identical to the transmitter receives the signal as in the scheme of

Fig. 14. Only the chaos component is effective in synchronizing the slave at the receiver. Resulting difference frees

out the message. (From [23], courtesy of the IEEE).
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The question is now, how about a scheme in which the signal is of same amplitude as
that of the chaos? The answer is chaos shift keying (CSK), a scheme first proposed for ICL
by Annovazzi et al. [23]. In CSK, we simply code the bits of a digital message to be
transmitted, the ‘‘0’’s and ‘‘1’’s, with a different chaos waveform.

As each transmitted bit of the message is associated with the entire chaos waveform, we
now fully exploit the available photons, and the SNR is that of a full amplitude message.

Of course, we need a way to generate chaotic waveforms that are undistinguishable to
the eavesdropper, yet well recognized at the receiver end. As we will decode the bits
through the synchronization process, the issue is on generating waveforms that are
mutually orthogonal with respect to synchronization.

This condition can be satisfied by acting on one of the several parameters governing the
dynamical evolution of the system, the easiest to access being probably the drive current of
the laser (affecting GN).

Thus, the CSK scheme of cryptography can be implementated as shown in Fig. 19 [23].
At the transmitter LD1/LD2, the drive current of laser LD1 is switched from J0 to J1, to
code the bit ‘‘0’’ and bit ‘‘1’’ of the message. Current J affects GN and hence E. Thus, the
chaos evolution is different for the two bits. We then obtain a sequence of piece-wise chaos
waveforms for the coded message.

Fig. 18. Signals in the CM (chaos masking) system. Left: the sum signal (chaosþmessage) time series (top) and

frequency spectrum (bottom); right: the reconstructed message resulting from the subtraction of the sum signal

and the synchronized chaos. (Adapted from [23], courtesy of the IEEE).
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At the receiver end, two twin ICL systems are set at bias J0 (LD3/LD4) and bias J1
(LD5/LD6), so that upon injection of the received coded waveform, they synchronize on
the designated bit, ‘‘0’’ for system LD3/LD4 and ‘‘1’’ for system LD5/LD6.
As we can see in Fig. 20, the CSK coded waveform doesn’t show any trace of the

message in the time domain or in the frequency spectrum, but synchronization extracts the
sequence of bits of the message at the two outputs of the receiver [23].
The CSK cryptography scheme works well in all the simulations, but when scrutinized

from the point of view of engineering and the suitability for implementation, it becomes
evident that the two-laser structure of the basic ICL scheme is the weak point. We can
actually realize it, but at the expense of added difficulty, because matched pairs of lasers
(LD1/LD2, etc. in Fig. 19) are costly and challenging to obtain.
Thus, on the way of transferring chaos cryptography into the world of products, it

would really help to have a simpler, possibly the simplest, configuration.

3. Self-coupling systems (or DOF, delayed optical feedback)

The minimum part-count configuration we may consider as the best candidate for a
chaos generator is a laser subjected to delayed optical feedback (DOF). The DOF is simply
the self-coupled scheme (Fig. 1) already mentioned in Section 1, also known as the
self-mixing scheme and one that is widely used, at the weak level of interaction, as a
method for measurements of phase and coherent injection detection of remote returns [1].
As shown in Fig. 21, the DOF system comprises a laser, a remote reflector, and an

attenuator to adjust the level of feedback to a factor K in field amplitude [25]. A beam
splitter conceptually allows us to enter the system with an external signal for the purpose
of synchronization. The DOF is simpler than the ICL, and the system can be readily

Fig. 19. Chaos Shift Keying (CSK) cryptography: transmitter LD1/LD2 generates a sequence of piece-wise chaos

waveforms, representing the bit ‘‘0’’ and bit ‘‘1’’ of the message, by changing the drive current of the laser LD1,

from J0 to J1. At the receiver end two twin systems are biased at J0 (LD3) and J1(LD5) and upon injection of the

transmitted waveform, they synchronize on its designated bit, ‘‘0’’ for system LD3/LD4 and ‘‘1’’ for system LD5/

LD6. (Adapted from [23], courtesy of the IEEE).
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implemented in a compact device by means of well-known technologies such as all-fiber

and integrated optics (Fig. 22).
In a typical all-fiber (AF) setup (Fig. 22 top), the laser diode is butt-coupled or

conjugated through a lens to a single-mode optical fiber pigtail. The fiber end-face in front
of the chip is angled (at 8–121 typically) so as to avoid back-reflection. The fiber may be a
few meters long and terminates at a mirror reflecting back the outgoing end.

By varying the distance between the fiber output tip and the mirror we can easily adjust
the level K of feedback. A polarizer and/or a polarization controller are used to inject into
the laser light with the same state of polarization as the emitted field (i.e. horizontal
polarization, in the plane of the diode junction), and a phase modulator serves to add the
phase-coded message.

With a fiber a few meters in length, this DOF scheme would be classified as a long-cavity

DOF. A long cavity is one for which the total external optical path-length 2s is larger than
L2¼c/2o2, the length-equivalent of the high-frequency modulation cutoff f2¼o2/2p of the
diode laser.

Fig. 20. Signals in the CSK system. Top: time series (left) and frequency spectrum (right), bottom: the sequence of

bits separately available at out‘‘0’’ and out‘‘1’’ of Fig. 19, along with the message waveform (Adapted from [23],

courtesy of the IEEE).
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In the opposite case, if the length is shorter than L2 (typically a few centimeters), we are
in the case of a short-cavity DOF, and the feedback reflection will come from the fiber end-
face in front of the chip (in this case, the fiber serves to carry the optical signal to a
transmission line).
The main differences of the two cases are: (i) the frequency spectrum of the generated

chaos is a sequence of lines for a long cavity and a continuous distribution for a short
cavity, and (ii) the system (and its generated chaos) is sensitive to the phase of the retro-
reflected field (short cavity) or is not, depending only on the intensity (long cavity).
Another variant that we can realize and experiment with AF is that of coherent or

incoherent feedback. When the return to the cavity involves an optical path-length 2s
shorter than the coherence length of the source at hand, or 2soLc, then the feedback is
coherent, whereas if 2s4Lc or, another possibility, we re-enter the cavity with a state of
polarization orthogonal to the oscillating mode, we obtain incoherent feedback [28]. With

Fig. 21. Scheme for a DOF (delayed optical feedback) chaos generator: the laser is subjected to a self-injection-

coupling, or self-mixing regime. The mirror reflects the outgoing beam back into the cavity, and an attenuator is

used to adjust the level of feedback. The 451-oriented beamsplitter serves to inject an external signal for

synchronization. (Adapted from [25], courtesy of the IEEE).

Fig. 22. Technologies for implementing the DOF scheme: all-fiber (top) and integrated optics (bottom).
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the polarization control of the AF setup, it is straightforward to rotate the returning linear
polarization by 901 and be able to experiment with incoherent DOF also with a short fiber.

In the integrated-optics (IO) version, we start with a planar optical waveguide structure,
and arrange along the propagation path all of the functions necessary to our system. In the
example of Fig. 22 (bottom), we may integrate the laser active region and its Bragg
reflector, and two modulators working in push-pull with opposite-sign drives, so that we
can introduce a controlled attenuation in the signal reflected back from the (cleaved) end-
face, as well as a phase modulation input for the signal. Of course, given the small chip size,
the IO lends itself to a short-cavity DOF (see also Section 4.3).

Going back to the system aspects, since the 1980s DOF (and, generally, semiconductor
lasers subjected to optical feedback) have been reported to exhibit a number of dynamic
phenomena. Such effects were initially described by Tkach and Chraplyvy [26] and later
investigated by Petermann [27].

The diagram of feedback strength versus the distance for retro-reflection (Fig. 23)
includes five regions associated with specific behavior, such as weak modulation, linewidth
narrowing and broadening, coherence collapse, and the external cavity mode (Fig. 23). In
the diagram, we add the regions of operation for measurement purposes (self-mixing) and
chaos generation.

Fig. 23. Diagram of coupling-strength vs. external cavity length: In the original description [26], region I

corresponds to linewidth narrowing/broadening (depending on the phase of feedback), II to line splitting and

mode-hopping, III to return to single-mode narrow-line operation, IV to coherence collapse, V to external cavity

mode. Dotted lines represent constant C for a typical laser diode. Lfreq is the relaxation length and Lc the

coherence length of the laser. Preferred regions of operation for measurements (self-mixing) and chaos

cryptography are indicated.
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3.1. Paradigm of high-level coupling in DOF

To study DOF operation, we return to the L–K equations (Eq. (3)) and alter them for
the case at hand, letting ES¼E(t�t) and fS¼2ks for the (self)-injection term, in which
k¼2p/l is the wavevector, s is the distance to the remote reflector, t¼2L/c is the external
time delay to the retroreflector, and k¼K is the coupling factor.
So we write, with the same symbols (and typical values) as in Eq. (3):

dE=dt¼ 1=2½GN ðN�N0Þ�1=tp�E þ ðk=tinÞE t�tð Þcos½fS þ f tð Þ�f t�tð Þ�
df=dt¼ 1=2 afGN ðN�NthrÞ�1=tpg þ ðk=tinÞE t�tð Þ=E tð Þsin½fS þ f tð Þ�f t�tÞ�ð
dN=dt¼ JZ=ed�N=tr�GNðN�N0ÞE2 tð Þ�kincohðN�N0ÞE2ðt�tÞ ð4Þ

In the third line of Eq. (4), the last term accounts for incoherent feedback [28]. In this
case, we let k¼0 and the external perturbation enters in the L–K equations through the
decrease of state density due to the delayed field E(t�t). For pure coherent feedback, we let
kincoh¼0 in Eq. (4).
The k factor in Eq. (4) is the product of A1/2, for the power attenuation A associated

with propagation to the external mirror and back, the external reflector (field) reflectivity
rext, the mode superposition factor Z, and the mirror transmission factor (1�r2)/r, where r
is the laser output mirror (field) reflectivity [1,11,12].
From the second line of Eq. (4), we derive again Adler’s equation as

df=dt¼ 2pn0tþ Csinðfþ fSÞ, ð5Þ
where n0 is the unperturbed frequency, C¼ [1þa2]1/2k(t/tin) is the coupling parameter (or
C-factor), and tin is the laser cavity roundtrip time [1].
Results of simulations of the DOF system with typical values for parameters (the same

as in the list of Eq. (3)) show that the evolution of the system follows much the same
pattern as that of the ICL system.
There are some important differences, however. The main parameters affecting the

dynamics are the coupling factor K (as for injection), and the reflector distance s (in place
of Dn). The main description of the system is provided by the field amplitude E (in place of
the beating), and with regard to frequency, the high frequency cutoff of the laser f2 takes
the place of Dn.
Self-pulsation, periodicity and chaos are again found for all setup variants (coherent vs.

incoherent, short vs. long cavity). The high dynamic regimes lie between an initial region
of moderate perturbation heralded by mode hopping due to the external-cavity added
phaseshift, and a final state of oscillation and bistability on the external cavity.
Typical results of simulation for E vs. K (for the coherent, short cavity case) are shown

in Fig. 24. Concerning the evolution of the dynamic state, we find:

– at very low K (o10�4), the system is unperturbed.
– at weak K (o0.002), the system exhibits self-coupling modulations, in amplitude
(cos 2ks) and frequency (sin 2ks) with sensitivity to the external phaseshift 2ks—this is
the regime of the self-mixing interferometer [1] and corresponds to the regime of weak
injection modulation of the system.

– at moderate K (0.002 to 0.005), the system starts switching in amplitude and frequency
due to coupling with external cavity modes (ECMs).

S. Donati, S.K. Hwang / Progress in Quantum Electronics ] (]]]]) ]]]–]]]24

Please cite this article as: S. Donati, S.K. Hwang, Chaos and high-level dynamics in coupled lasers and their
applications, Progress in Quantum Electronics (2012), http://dx.doi.org/10.1016/j.pquantelec.2012.06.001



– at larger K (0.005 to 0.015), the system enters a periodic/multiperiodic regime.
– at even larger K (E0.015), the system breaks into chaotic pulsations.
– self-pulsation and chaos alternate a few times until the system oscillates or becomes
locked on the external cavity (at KE0.04).

– at still higher K values, the system ends up with steady oscillation, or bistability, on the
external cavity.

The time series and spectrum for periodic and multiperiodic, burst and chaos regimes of
a DOF short cavity coherent system have been calculated from Eq. (4) assuming the
standard set of laser parameters (cf. Eq. (2)). The results are reported in Fig. 25. Data are
representative of findings for a wide range of parameters, i.e., coupling factor K¼0.001 to
0.7, external reflector distance s¼7.5 to 30 mm, a-factor varied from 3 to 6, and phaseshift
2ks (mod. 2p) varied from �p to p. The pattern of transition boundaries from an
unperturbed regime to chaos finely depends on the particular set at hand, yet waveforms
found in any island have much the same character for a wide combination of parameters.
The trend of transition boundaries is moving to decreasing values of K as the distance s is
increased, much the same as reported by Jones et al. [28]. The passage from short to long
cavity is located [11] at L2¼c/2o2¼30 mm for our set of parameters.
An important difference between short and long cavities revolves around the frequency

spectrum of the field amplitude in the chaos regime. As shown in Fig. 26, the short cavity
DOF gives a continuous spectrum, and amplitude changes with the interferometric phase
of the external path 2ks. The long cavity DOF yields a spike-like spectrum but is insensitive
to external phase.

Long cavity DOF has been extensively studied and numerical simulations were
confirmed by experimental measurements, basically using the all-fiber setup of Fig. 22.
Annovazzi et al. [29] found that, with an external fiber of 0.875 to 9.375 m long, chaos
develops over a wide range of bias current (from 10 to 18 mA) and K factor (0.05 to 0.2)
combinations. The electrical spectra evolves from a few-lines centered at f¼ f2 (about
4 GHz in Fig. 27) at low K, to a wide many-line spectrum, filling the interval of 1.75 to over
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Fig. 24. In the E vs. K diagram of DOF or self-coupled system, we find alternating regimes of chaos, burst and

multiperiodicity, sandwiched between an initial weak modulations (the self-mixing regime) and a final condition of

external mode oscillation, much the same character as for the injected system of Fig. 4.
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5.5 GHz at higher K (Fig. 27). The frequency spacing of the lines is Df¼c/2s, or 150 MHz
for the s¼72 cm distance of system in Fig. 22. Consistently, when soc/2Df (¼3 cm for
Df¼5 GHz), the line spacing occupies the entire frequency span and we obtain the
continuous spectrum of the short cavity (Fig. 26, left).

Fig. 25. Time series (top) and optical spectrum (bottom) pairs for a DOF system at different levels of K (0.01 to

0.1), showing the regimes of periodic solution (top left), multi-periodic solution (top right), burst regime (bottom

left), and chaos (bottom right).

Fig. 26. Frequency spectrum of chaos generated by a short cavity DOF (left), and of a long cavity DOF (right). In

the first case the spectrum is continuous and sensitive to external path phaseshift 2ks, while it is independent from

2ks and is made of discrete lines in the second case. (Adapted from [29], courtesy of the IEEE).
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Incoherent DOF is the case most frequently found in practice when the laser cavity is
affected by an unintentional return by the transmission line (even scattering from the fiber) or
a stray back-reflection. Only one equation (the third line in Eq. (4)) provides the nonlinear
coupling of variables, through the last term delayed by t, which describes the propagation to
the remote backscattering source of disturbance. As the re-injected term decreasesN and hence
E, the burst regime is enhanced in particular, with delayed and inverted polarity damped
oscillation trains, as reported by Ju and Spencer [30]. The usual chaos and periodicity regimes
are also found in incoherent DOF, but both are different from the other regimes, the threshold
bias current of the laser is not affected by feedback, and chaos is found at a higher level of
coupling strength [11,12]. Using a ring external cavity to rotate the polarization of the

Fig. 27. A long cavity DOF system exhibits a large interval of chaos generation, in current and coupling factor.

At increasing K (top to bottom in figure), system evolves from the periodic regime to chaos, and the electrical

spectrum spreads from the initial relaxation frequency f2 (about 4 GHz) to nearly zero and up to 1.5f2 and more.

(From [29], courtesy of the IEEE).
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returning field by 901, Ju and Spencer [30] found, at increasing remote mirror reflectivity r, a
stable regime for ro0.27, chaos for 0.27oro0.55, burst relaxation oscillations for
0.55oro0.8, and a two-state regime for r40.8 in which the laser switches between on and
off states, which are triggered by the delayed reflection.
Among the possible variants of the DOF chaos schemes, the coherent short cavity looks

to be the most attractive for cryptographic applications because: (i) it is compact and
amenable to integration and batch production; (ii) the range of parameters for chaos
generation is wide; and (iii) the coherent dependence on external reflector optical path 2ks
adds one extra variable to the security of transmission.

3.2. Synchronization of DOF system

Much in the same way as for ICL (cf Section 2.3), synchronization of a DOF can be
performed by applying, at the slave system input, the difference of the master (or
synchronizing) system S1 and of the output of S2, as shown in Fig. 28 (top), so that when
the condition E2¼E1 is reached, the slave system is allowed to evolve freely [25]. The speed
at which synchronization takes place varies with the initial conditions of the slave system
and the state of the master, or, type of waveform injected in the slave. A typical result
representative of the average speed obtained is shown in Fig. 28 (bottom). The
synchronization error, defined as s¼ (E2�E1)/E0, where E0 is the unperturbed amplitude,
damps out in a few cycles of the relaxation frequency f2 of the laser, down to a small
residual ripple (typically s¼4� 10�4) left over in the steady state—quite an
acceptable (small) error from the engineering point of view.
About sensitivity to parameters of the synchronization error, exhaustive numerical

simulations have been carried out [25], and results can be summarized as follows: at an
above-threshold current J/J0¼1.1 to 1.4, the steady-state error s keeps below 10�3 in the K
range of chaos generation (1.3 to 10� 10�4). With respect to the mismatch of internal laser
parameters (i.e., GN, Nthr, N0, tp, tr, a, o0, Z, and d in Eq. (2)), the DOF error follows the
same trend of the injected-system data of Fig. 16.

3.3. Chaos cryptography with DOF system

Using the synchronization method described in Section 3.2, it is straightforward to adapt
the CSK (Chaos Shift Keying) to DOF, and the resulting scheme is reported in Fig. 29. System
S1 generates a sequence of chaotic waveform samples, coded by the binary bits ‘‘0’’ and ‘‘1’’ of
the message, which enter the system as the values K0 and K1 of the DOF generator. At the
receiver end, two receivers R1 and R2 are tuned onto the K0 and K1 chaos waveforms, and
thus separately synchronize on the sequence of ‘‘0’’ and ‘‘1’’ found in the message. By
combining the outputs of R1 and R2 bits we are able to reconstruct the message [25].
In Fig. 29, we report an example of waveforms obtained by the DOF system with CSK

coding: upon transmitting a square wave, the output Sout2 damps to zero at each received
‘‘0’’ bit, whereas Sout2 will do the same for the ‘‘1’’ bit.

4. Experiments

In recent years, extensive developmental activity has been carried out to demonstrate the
feasibility of chaos-based cryptography. Several groups pursued an engineering effort to
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develop a chaos cryptography system, also thanks to the support of two European
programs, Occult and Picasso [31].

Experiments have included Chaos Masking and Chaos Shift Keying generated by DOF
systems, initially in discrete micro-optics configuration, and later on in integrated-optics
technology. A few experiments have been also conducted with apparatus deployed in the field.

4.1. Chaos masking experiments

Experiments have been first performed according to the CM (Chaos Masking) approach
described in Section 3.2.

Annovazzi et al. [32] have used a 1.55-mm DFB laser with a short-cavity DOF to
generate the chaos waveform masking the message. The message was a weak optical signal,
superposed in intensity with chaos at a wavelength close to 1.55-mm (Fig. 30). At the
receiver end, a second laser tuned on the transmitter parameters synchronizes with the
chaos contained in the line received waveform. A balanced detector subtracts the chaos
waveform from the received waveform and recovers the message.

Fig. 28. (Top) Scheme for synchronization of DOF: at the input node of S2, the master output E1 is added and

the E2 output subtracted, in a way similar to the configuration of Fig. 14; (bottom) the synchronization error

(E2�E1)/E0 relative to unperturbed value E0, as a function of time, for a chaos regime of S1. Error damps out fast

though a minute residue (see inset, about 4� 10�4 peak-to-peak) is observed at long times. (Adapted from [25],

courtesy of the IEEE).

S. Donati, S.K. Hwang / Progress in Quantum Electronics ] (]]]]) ]]]–]]] 29

Please cite this article as: S. Donati, S.K. Hwang, Chaos and high-level dynamics in coupled lasers and their
applications, Progress in Quantum Electronics (2012), http://dx.doi.org/10.1016/j.pquantelec.2012.06.001



Fig. 31 shows the performance of the CM-DOF system: the time-domain series of chaos at
the transmitter and receiver ends are very close, and the frequency spectrum of the transmitted
signal (chaos plus message) does not show any intelligible features, while the difference between
the received signal and recovered chaos has a clear signal peak at 3 GHz with a CNR (carrier-to-
noise ratio) of 45 dB [32]. Another result, shown in Fig. 32, is about the transmission of an
audio tone and a video image, both modulated with the 3-GHz carrier. The reconstructed signals
are of good quality in both cases. These results were obtained for a back-to-back CM-DOF, that
is without any intervening attenuation nor any line noise adding degradation of the transmitted
signal, like that experienced on a real fiber trunk.
An experiment on an installed 120-km trunk of monomode G-652 3rd-window fiber then

followed [33]. Conducted by Argyris et al., this study was carried out in the Athen’s
metropolitan network (Fig. 33, left) [33]. As we can see in Fig. 33 (right), the message cannot
be recognised in the chaos masked waveform, whereas the signal closely approaches the
transmitted signal when decoded by the receiver, so that the BER (bit error rate) is reasonable,
even for transmission rates in the Gb/s range. The eye diagram of the CM-DOF system, for a
1.5 GHz transmission, is shown in Fig. 34 [33].

4.2. Chaos shift keying experiments

An improvement of CNR is offered by CSK with respect to CM (cf. Section 2.4),
because with CSK it is not necessary to keep the amplitude of message small with respect
to that of the chaos masking waveform, as in CM.
On the other hand, the weak point of the CSK basic scheme (Figs. 19 and 29) is the

subtraction, at the input node, of output signal Eout and synchronizing signal Esyn. This
operation shall be performed on the field amplitudes, and thus it requires a phase-sensitive

Fig. 29. (Left): scheme of CSK cryptography with the DOF generator S1 in transmission followed, after the line B, by

receivers R1 and R2 tuned onto the ‘‘0’’ and ‘‘1’’ chaos waveforms generated byK0 andK1. (Right): output of receiver R1

showing the synchronization on the ‘‘0’’ bits in the message. (Adapted from [25], courtesy of the IEEE).
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adjustment to keep the fields Eout and Esyn out of phase by p, (or, opposition) a condition
critical to be mantained in a practical implementation.

A solution to make a practicable CSK is offered by the DOF system reported by
Annovazzi et al. [34]. They used a short-cavity DOF generator and incorporated a phase
modulator in the external cavity (Fig. 35). The message enters as the voltage drive DVin of
the LiTaO3 phase modulator, introducing a phase Dcin added to the optical pathlength
2ks. As a short cavity DOF is sensitive to the phase of the external cavity, the generated
chaos waveform carries a trace of the message impressed with phase Dcin. At the receiver
end, an identical DOF generator has the phase modulator set at zero voltage drive. Thus,
the receiver is synchronized only for zero input message or phase Dcin, and the correlation
between the receiver and the transmitter chaos waveforms progressively decreases at the
increase of the phase difference Dcin. This process is a sort of phase-to-amplitude
conversion, and therefore direct photodetection of the receiver chaos optical signal
followed by an FM detection supplies a signal proportional to Dcin and hence to DVin [34].
In Fig. 36, we can see the electrical power spectrum of chaos (master) with a message

Fig. 30. Chaos Masking experiment with a DOF chaos generator: the MASTER DFB laser is the chaos DOF

source, and its output is superposed with the 50/50 fused-fiber coupler to the message, by another DFB laser at a

wavelength close to the master. After propagation, the received signal is amplified and adjusted in polarization

state and comes to synchronize the SLAVE DFB chaos DOF. The balanced detector (PD2 and PD3 plus fiber

coupler) serves to inject the received signal and to make the difference of it and the synchronized chaos. (From

[32], courtesy of the IEEE).
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hidden in it, and that of the extracted message, the 100-MHz note, now with a good CNR
of E12 dB.

4.3. Integrated optics technology for cryptography

Integrating the functions of a chaos-based system into an IO (Integrated Optics) or PIC
(Photonic Integrated Circuit) chip is crucial to demonstrate that high-level dynamics
systems not only can work in principle, but are ready to be engineered and to become
viable products.

Fig. 31. Performance of the CM-DOF cryptography: the time-domain waveform of the chaotic amplitude (upper

figure, gray for master and black for slave) does not show any trace of a message; (bottom): the frequency

spectrum of transmitted signal (top trace) and the difference between master and slave (bottom trace) revealing

the peak of extracted carrier at 3 GHz (Adapted from [32], courtesy of the IEEE).
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Fig. 32. Signals from the CM-DOF of Fig. 30: a tone at 3 kHz (left) at the input (top), masked by chaos (middle),

and reconstructed (bottom); a TV image at 5 MHz video bandwidth, chaos coded (left) and at the input (top right)

and output (bottom right) (Adapted from [32], courtesy of the IEEE).

Fig. 33. Path of the 120-km trunk of single mode G-652 3rd window fiber of the Athen’s metropolitan network

for the transmission experiment with a CM-DOF system (left); right, from top to bottom: message, chaos encoded

message, reconstructed message, and bit error rate (Adapted from [33], courtesy of Nature Photonics Letters,

London).
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Several prototypes or demonstrators have been developed recently [35–38] in the frame
of EEC programs [31] as well as of other national (Japan, US) efforts.
Argyris et al. [35] first reported a PIC chip based on indium phosphide technology, that

incorporates all the desirable functions to make a versatile chaos generator or chaos-based
transmitter based on a short-cavity DOF system. The chip works at 1560 nm, in the third
window of optical fibers, and employs a standard InP technology based on ridge
waveguide and a multi quantum well InGaAs active layer. The chip includes four basic
sections (Fig. 37): (i) a DFB laser of standard design, with a Bragg reflector on one side,
and a cleaved facet on the other side (the left-chip edge) where the optical beam is emitted;
(ii) a gain/absorption section (GAS) to trim the K factor of re-injection; (iii) a phase section
(PS) to finely control the external cavity length 2ks, at the interferometric level; and (iv) a
very long (10-mm) drift section, a passive waveguide going to the right-side chip edge
where a high reflective coating is applied. The rings visible in the micrograph (Fig. 37,
bottom) are the access contact to the sections, brought out to external connectors by micro
striplines. To electrically isolate sections biased at different voltages, a back-to-back doped
island can be used, whereas the intermixing process could allow for the reduction of
absorption and losses in the passive waveguide zone.
By trimming the bias current to the GAS section, Argyris et al. [35] were able to generate

the regimes of unperturbed, periodic and multiperiodic, and chaos, dependent on phase
(i.e. current to the PS), at low bias. When the GAS is driven hard by a high current so as to
become an SOA (semiconductor optical amplifier), a fully chaotic regime independent of
phase is developed. Also interesting is the emergence, at certain intermediate bias levels, of
intense peaks at 3.3 and 6.6 GHz [35].

Fig. 34. Eye diagram of the data transmission with the CM-DOF system. Top: input message at 1.5 GHz bit rate;

middle: chaos-coded waveform; bottom: waveform reconstructed after a 120-km propagation in single mode, 3rd

window, installed fiber (From [33], courtesy of Nature Photonics Letters, London).
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Fig. 35. A short-cavity DOF- CSK system, implemented in hybrid (micro-optics-and-fiber) technology, uses a lithium

tantalate phase modulator to impress the message as a phase variation Dcin in the cavity and hence in the chaos

waveform generated by the phase-sensitive DOF. At the receiver, a dummy modulator set at zero synchronizes only

when Dcin¼0 and its waveform deviates from the input the more Dcin increases. Photodetection by PD2 and an FM

demodulation of signal act as phase-to-amplitude converter, thus extracting the message (From [34], by courtesy of

the IEEE).

Fig. 36. Left: electrical frequency spectrum of chaos of the master DOF (black curve) with the FM signal hidden

in chaos, and of the slave DOF with the extracted signal, the 100-MHz carrier tone (gray curve). Right: sine wave

signal transmitted over the carrier (a), with master and slave off (b), with master on and slave off (c), and

recovered (d). (Adapted from [34], by courtesy of the IEEE).
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In later work [36], Argyris et al. reported an interesting experiment of secure data
communication, on a 100-km trunk of dispersion-compensated fiber, using their PIC [35]
for the transmitter and receiver of a CM system (Fig. 38). The only extra component
needed was a Mach–Zehnder modulator, placed at the transmitter output, to amplitude
modulate the message (in OOK format) by taking advantage of the dc power pedestal of
the chaos waveform available at the transmitter.
In another implementation of the DOF short-cavity generator (Fig. 39), also based on

InGaAs waveguides fabricated in an InP substrate, Tronciu et al. [37] described a PIC chip
incorporating a DFB laser, two 5-mm long waveguides and two phase modulators, that
realizes the phase-coded scheme of transmission of Fig. 35. For a 1 Gb/s transmission rate
of a binary NRZ sequence, they reported a wide open eye diagram and a BER better than
10�4 at the receiver decoded output, while the error was larger than 10�1 for the masked
signal [37].
For a quite different structure (Fig. 40), a ring oscillator made by a passive

waveguide fed by a DFB laser and boosted by two side SOA amplifiers, and with in-line
photodiode for signal conversion to electrical output, Sunada et al. [38] have reported a
good control of periodic and chaos regimes througout all the range of currents to the
different sections. As the ring structure minimizes the losses, and the SOAs can provide
gain, the structure is unique because it can work at very high K, approaching unity or
even 41.

Fig. 37. PIC (Photonics Integrated Cı̀rcuit) chip implementing the functions of a short cavity DOF. Top: the

functional blocks, including a DFB 1.55-mm laser, gain and phase control sections, and a long (1-cm) passive

waveguide running up to the reflective end-facet. Bottom: micrograph of the chip (Adapted from [35], courtesy of

the American Physical Society).
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4.4. Development aspects of chaos cryptography

System aspects are an important check in the development of a new technology like
chaos cryptography, and in particular (i) compatibility to existing methods, (ii) retrofit of

Fig. 38. Experiment of chaos secure transmission based on CM (Chaos Masking) cryptography using as transmitter

and receiver the PIC chip of Fig. 37. Message is added by a Mach-Zehnder modulator at the transmitter output (From

[36], courtesy of the Optical Society of America).

Fig. 39. Another implementation of a DOF short-cavity PIC chip, fabricated by InGaAs waveguides on a InP

substrate, and incorporating a DFB laser, two 5-mm waveguides and two phase modulators, to realize the phase-

coded scheme of transmission of Fig. 35. (From [37], courtesy of the IEEE).
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previous approaches, and (iii) flexibility of reconfiguration are key aspects that may be
crucial for the success of the new idea.
In this view, several extensions as well as issues about interfacing with classical TLC

(Telecommunication) methodologies have been studied and discussed recently for the
chaos cryptography system.
First of all, several authors have tested optical chaos cryptography signals for robustness to

attenuation in long fiber transmission and to added noise of optical amplifier line regeneration
[11,12,33]. These studies found that the effects of dispersion and nonlinearity of the fiber
do not impact the chaos-coded signals differently from a normal telecommunication data
transmission.
Annovazzi et al. [39] have tested the robustness of the chaos cryptography message to

wavelength conversion, an operation that optical streams undergo in modern network, all-
optical dispatching. Based on four-wave mixing in an SOA, they demonstrated a transfer
of message from one wavelength to another shifted by 2 nm with �10 dB conversion
efficiency and little SNR penalty, as well as with a 20-nm potential conversion shift.
Ursini et al. [40] considered NRZ (Non-Return to Zero) and Manchester modulation

formats for digital transmission with a CM system, and found that the shift from baseband
to higher frequency with Manchester coding effectively improves the masking and recovery
process, resulting in a final gain of several dB in the Q-factor (the generalised SNR) of the
transmission link.
In a different context of optical communications, that of a Free Space Optical Link

(FSOL), Annovazzi et al. [41] have successfully demonstrated the applicability of a CSK
system, based on a slightly modified synchronization method. They use electrical injection
in transmitter Tx and receiver Rx lasers, biasing them with the electrical signal generated

Fig. 40. A ring structure chaos generator PIC (top), featuring a 3.5� 3.5-mm chip in InP with a passive

waveguide closing a ring path around a DFB laser and a pair of SOA. Bottom: active (left) and passive (right)

guide structure (Adapted from [38], courtesy of the Optical Society of America).
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by a third (master-chaos) laser, photodetected to supply the bias drive. When Tx and Rx
are well matched, the system can withstand a �30 dB propagation loss with no penalty, up
to the high frequency cutoff of the multipath diffuse propagation.

Other concepts extending classical approaches such as CM and CSK, and proposing
new variants have been developed. For example, Pisarkis and Ruiz-Oliveras [42] proposed
a complete synchronization scheme that improves transmission quality and de-sensitizes
CM to the influence of parameters, up to 5 GHz, close to the laser upper frequency
response, while Buldu et al. [43] showed that two modes of a multimode laser driven to
chaos can be de-multiplexed and used to synchronize two separate monomode lasers,
hinting at channel multiplexing in chaotic transmission. Other papers have considered
combining the actions of delayed optical feedback and chaos electrical drive of bias [44] to
generate high-dimensionality chaos—or hyperchaos [45]. Also, many other contributions
are available in the literature that we cannot mention because of space limitations.

In conclusion, beyond their intrinsic value, all these works basically attest to the fact that
chaos cryptography stands on very solid roots, and that it can be easily re-adapted to
exploit new concepts, most of which differ little from the point of view of necessary
hardware, yet significantly deviate conceptually from the basic ideas.

4.5. Cryptography security and system issues

Establishing a secure communication against malicious adversaries has been a target
since the times of Romans, and the cypher used by Julius Caesar to communicate with his
generals is perhaps the first working example of cryptography. It was based on moving by
two (or more) places forward in the alphabet each letter of a message, e.g. ‘‘oqtpkpi
cvvaem’’ for ‘‘morning attack’’—an easy and efficient cypher whose embryonic key is the
number of moves of the cypher.

In the Middle Ages and the Renaissance, cyphers based on letter transposition and/or
substitution were improved by contributions of scholars like Leon B. Alberti (Rome),
inventor of the polialphabetic cypher disk, G. Cardano (Pavia), G.B. Della Porta (Naples)
and Blaise de Vigen�ere (France), inventor of polyalphabetic table, a cypher considered
unbreakable for two centuries, until in mid 1800, the Prussian lieutenant F. Kansiski
published the method to force it.

Whatever the cryptography method, the rules for correct use were investigated in 1863
by Kerckhoffs, who found that the security of a cryptography does not reside in the
algorithm (or cypher method) but in the key (or secret word to operate the algorithm), and
obviously, in keeping the key secret.

Indeed, if the cypher method (e.g., transposition of letters) becomes known to a third
party (or eavesdropper), the code will be easily broken by repeated attempts. Only if the
key is sufficiently large (or complicated), attempts to break the encrypted message will
require too much time.

Shannon [46] found in 1949 the conditions for a cryptography code to be theoretically
unbreakable: the key must be a one-time pad (not re-used), its length shall be equal to or
greater than the message, and the encrypted message shall be randomised. With the
exception of a one-time pad, most cryptography codes can be broken by a brute force
attack if enough computational time is available, but the effort needed may be increasing
exponentially with the key size. So, a cryptography may be theoretically breakable but
computationally secure.
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In the computer era, much more complex cyphers became possible, based on the binary
format for representation and encryption of any kind of data. Cypher algorithms have
been developed which demand limited resources (speed, memory and CPU capability)
while the breaking attempt requires increasingly large computational time and resources,
so as to be impractical and effectively impossible.
Algorithms derived from intractable mathematical problems, such as, prime number

factorization, discrete logarithm and elliptic-curves, have increased substantially the
difficulty of brute-force attacks.
Thus, in the last few decades, the applications of computer-enabled cryptography have

entered everyday life with, e.g., ATM cards, computer passwords, e-commerce, digital
signature, etc.
In the era of photonics, it is quite possible that the paradigm of cryptography makes

a new turn, and takes advantage of the parallelism of information flux and of the much
larger bandwidth potentially available in the optical region. The rich variety of wave-
forms generated by high-level chaos dynamics, and also the unique features of entangled
photons – exploited by quantum cryptography – are two additional strong points
favouring applications of the new photonic-enabled technology.
Secrecy of the key used to operate the algorithm is an issue even more critical than code

breaking. Each pair of communicators require a different key and, with an increasing
number of communicators, there is a problem of key management to keep all the keys
secret. The problem of distributing a secret key, when a secure channel is not already there,
is a chicken-and-egg problem, a practical obstacle for cryptography in the real world.
So while traditional methods were based on symmetrical cryptography (one key to

encrypt and another to decrypt, both to be secret), a groundbreaking step was the
invention, by Diffie and Hellman [47], of the public-key or asymmetrical cryptography (one
key public, one key secret).
In the public-key scheme, Bob sends to Alice a public key (openly available) to encrypt

her message, and upon receiving it, uses a secret key to decrypt it. Both keys are generated
secretly as an interrelated pair, though the private key is computationally infeasible from
the public key.
Secret key cryptography is the core of today’s widely known encryption technology, with

products such as RSA encryption, PGP, Schnorr, etc. Their security properties have been
generally tested using empirical methods and ad-hoc reasoning and, more recently, by
techniques called provable security, that evaluates the computational difficulty needed to
crack security aspect of the encryption [48].
As asymmetrical cryptography is rather slow in dispatching large amount of data,

frequently it is used just to exchange first the crucial information—the symmetrical
key—and then crypted communication continues using the faster and simpler symmetrical
cryptography.
All the above considerations, belonging to classical ‘‘computer science’’ cryptography,

should now be somehow confronted to our optical chaos-based approach—at least in the
present status of DOF CM or CSK, or derived schemes.
First of all, ours is a symmetrical cryptography scheme. The keys are in part hardware,

that is, a pair of matched semiconductor lasers, and in part software or numerical, that is,
are the values of the working parameters. The algorithm (cypher method) is chaos
synchronization—and as such, we shall assume it is known or easy-to-discover to the
eavesdropper.
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From the foregoing discussion, our cryptography is a breakable one, in the sense that
malicious Eve can intercept a chaos-crypted message going from Bob to Alice, and try to
synchronize herself with a fake laser diode emulating the true key laser of Alice.

One issue still open and deserving experimental analysis to be verified or falsified is whether a
general-purpose, commercially available laser, can be used as Alice’s laser in place of the true
hardware key. Assuming conservatively that this can be done at some added complexity, we are
then left with a cryptography whose robustness resides in the numerical key.

A relatively simple and effective index of robustness is the number of possible cases
facing Alice who is trying to decript the message by chance.

Considering a typical chaos cryptography system, such as a short-cavity P-CSK (phase-coded
CSK, as in Section 4.3) implemented by Tx/Rx chips of the same wafer, we may estimate the
following number of different choices for each parameter affecting the generated chaos:

– K value (adjusted to E10% steps) 10 cases
– cavity length s (gross adjustment to E20% steps) 5 cases
– cavity length 2ks excess to nl (adjust to l/50) 50 cases
– drive current J (1mA steps in 15–35 mA) 20 cases
– a-factor (step of 1 in a 2–6 range) 4 cases
– wavelength range (or chip temperature) 10 cases
– time delay synchronism (adjusted to 5%) 20 cases

The total of these cases rises to N¼4� 107. Being a rule-of-thumb evaluation, the
estimate has a wide uncertainty, yet it indicates that chaos cryptography may not offer the
desirable large N.

In contrast to chaos, quantum cryptography based on entangled states has virtually
infinite N, or–the method is computationally secure.

Chaos cryptography is not computationally secure but has the advantages of exploiting
all the available bandwidth of the laser (GHz) and has no constraint on the quantum
efficiency of the detectors and the attenuation of the fiber, whereas quantum cryptography
requires one-photon-at-a-time transmission (reducing bandwidth) and close to unity
detector efficiency and limited medium loss.

The limit of N can be overcome by reinforcing the system with over-encryption, which
consists in superposing different methods simultaneously. In fact, the eavesdropper is
defeated if just one of the algorithms used to encrypt is missed out, even if a low-N one.

In conclusion, chaos-based cryptography is a new promising approach, yet further
research is necessary to exploit its full potentiality. New configurations should be
developed to increase factor N, and an effort is advisable to be able to translate into optical
chaos systems the concept of asymmetrical or public-key cryptography.

5. Applications of chaos to high frequency and instrumentation

5.1. Interferometer measurements

Self-mixing interferometry (SMI) is a measurement method based on the DOF scheme
at weak levels of interaction, in contrast to the high level considered in Section 3 which
gives rise to chaos-based applications.
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In a recently published review [1], the reader can find the details of operation of SMI as
well as the discussion of SMI applications to distance-related measurements and other
physical parameters.
In this section, we wish to only add that, also at the high-level of self-coupling, an

interferometric measurement can be carried out by the SMI scheme.
Indeed, as the chaos waveform of a short-cavity DOF scheme is sensitive to the optical

pathlength of the external reflector (cf. Section 3.1), then by inspection of the chaos
waveform c(t), we can have a signal proportional to cos 2ks (where k¼2p/l is the
wavevector), like that supplied by a normal interferometer.
Measuring the amplitude of the chaos waveform c(t) at the relatively high frequency

(around the f2 of the laser) is unwieldy. Instead, we can take advantage of the lucky
circumstance that the time-average /c(t)S of the chaos waveform is not zero (as positive
and negative semiperiods do not cancel out) but is proportional to the peak-to-peak
amplitude, that is /c(t)SEcos 2ks, the desired signal, now at low-frequency.
In Fig. 41, we report the waveforms for an SMI measurement [49] performed at

increasing levels of coupling: from weak (C¼0.01 corresponding to K¼3� 10�5) to
moderate (C¼2) to strong (C¼60, K¼0.18) coupling. In the last case, the laser is driven
deep in the chaos regime. In Fig. 41 (bottom trace), the chaos waveform at Ef2 is
unnoticed because it is beyond the high-frequency cutoff of the SMI circuit and yet the
SMI signal is present because of the non-vanishing average.
However, as can be seen in Fig. 41, the SNR of the SMI signal is not as good as weak or

moderate coupling, and thus preference is to the low C range for best operation.

5.2. Telemetry

When driven in the chaos regime, a laser can be employed as the optical source to make
a correlation-based rangefinder (that is, a distance-measuring instrument), as first
demonstrated by an experiment of Myneni et al. [50].
They used a commercial 850-nm laser diode, and coupled back in the cavity a few

percent of the output field by means of a mirror placed at s¼22 cm, and tilted in angle to
adjust the K and obtain a wideband choatic source. The optical spectrum of the DOF laser
was broadened up to about DnE50 GHz from the E10 MHz unperturbed value.
Correspondingly, the autocorrelation of the optical field became a spike-like distribution

with a duration of E50 ps (or 15-mm in equivalent length). The principle of measurement,
then, is as follows: we make a correlation of a delayed replica S(t�T) of the transmitted
S(t) waveform and the received S(t�2L/c) returning from the remote target at distance L.
Using an adjustable delay line to match the S(t�2L/c) and S(t�T) waveforms so that their
correlation is maximized, we obtain T¼2L/c from the experiment and determine L. With a
3-GHz bandpass of the electronic circuitry, resolution of the measurement was a few
millimiters (corresponding to a few ps of correlation maximum localization).
In another contribution, Lin and Liu [51] discussed the use of a chaos-driven ICL source

in combination with a correlation measurement on the signal, converted to electrical
for Tx/Rx by microwave antennas. They considered a proof-of-concept scheme using an
ICL system that generates wideband chaos. By photodetection, the optical spectrum is
converted into an electrical multi-GHz quasi-white noise signal. The signal is transmitted
and received back by antennas, so as to sense the external target by correlating the
received waveform to the transmitted one. Simulations were backed by an experiment with
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a 1300-nm laser, providing a flat-spectrum microwave signal in the range from 1.5 to
3 GHz, from which the measured resolution was 9 cm.

In a later paper [52], Lin and Liu used directly the optical output of the ICL to sense the
remote target and made the correlation measurement. The reported resolution was 3 cm
with sub-cm accuracy.

Fig. 41. Waveforms obtained with a DOF scheme used as an SMI. Top to bottom: the drive signal of distance s(t)

to the remote reflector; the SMI signals for weak return (C¼0.01), moderate return (C¼2) and strong return

(C¼60). (From [50], courtesy of the SPIE, Bellington).
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5.3. Random number generation

Driven into the chaos regime, an ICL or DOF system supplies a waveforms that are
much similar to random noise. Though generated by a deterministic process, chaos
waveforms may have (see, for example, Fig. 26) a power spectrum nearly flat from zero
frequency to an upper frequency f2, of the order of magnitude of the cutoff frequency of
modulation (or even larger because of feedback). Thus, the spectrum is similar to that of
white noise. In addition, f2 may be in the range of several to a few tens of GHz, so chaos
generation is competitive with other technques for high-frequency random number
generation.
Sunada et al. have reported [38] on a ring-cavity DOF chaos generator chip, a PIC

integrated in InP technology, that, when subjected to several randomness tests (NIST,
Diehard, K–S), showed excellent compliance to the tight specifications of the standards.
The autocorrelation of the generated waveform damps to zero in less than 100 ps, and the
power spectrum is nearly flat (75 dB) from 0 to 10 GHz.
Moreover, with digital processing after sampling the analogue waveform, random bit

streams with bit-rates as high as 140 Gb/s have been demonstrated with the PIC chip.
A similar result has been reported also by Argyris et al. [53], using a DFB laser

integrated on a PIC chip with a 1-cm reflector DOF, generating a random bit sequence up
to 140 Gb/s.

5.4. Microwave generation

When the ICL system is driven into the self-pulsation region through strong coupling (at
KE0.2–0.4 in Fig. 11), the output intensity of the slave laser undergoes high-speed single-
period oscillation, also known as period-one (P1) oscillation.
The frequency of P1 oscillation can be continuously tuned from a few to hundreds of

GHz by simply adjusting the level and frequency of the optical injection [54].
Broadly tunable microwave generation with constant microwave power has been

demonstrated by Chan et al. [55] through such an all-optical scheme, which circumvents
restrictions imposed by microwave electronics and electrical parasitics.
Further, an optoelectronic feedback approach has been proposed [56] to reduce the

linewdith of the generated microwave, from tens of MHz down to tens of kHz, thus
eliminating the need of an external reference microwave source for such a purpose.
Since the P1 oscillation frequency depends strongly on the level of the optical injection,

amplitude modulation of the optical injection leads to frequency modulation of the
generated microwave, thus carrying out signal conversion from optical AM to microwave
FM [57].
P1 oscillations originate from the beating between light injected by the master laser and

light emitted around the shifted cavity-resonance of the slave laser [58]. The optical
spectrum, consisting of discrete lines equally separated by the P1 oscillation frequency,
is thus dominated by these two frequencies. Such a feature of optical single-sideband
modulation is advantageous for radio-over-fiber applications, in order to mitigate
microwave fading due to fiber chromatic dispersion [55].
By taking advantage of the discrete spectral lines under P1 oscillation, Hwang et al. have

proposed [59] using ICL as an all-optical frequency converter. Simultaneous frequency down-,
no-, and up-conversion are feasible, and modulation format transparency is achieved, which
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was only possible previously through four-wave mixing, without the need of any pump or
probe as in other converters. Since the intensity and the frequency of spectral lines depend
strongly on the injection frequency and amplitude, frequency modulation of the optical
injection leads to amplitude modulation of spectral lines, and vice versa, a hint to modulation
format conversion between optical AM and optical FM.

6. Conclusions

In this paper, we have presented an overview of chaos and chaos-related basic
phenomena and their applications. We have tried to systematize the field of chaos and
high-level dynamics, discussing several versions of coupling phenomena in laser diodes,
such as injection coupled and delayed optical feedback, which represent different classes of
systems and lead to different performance.

The examples reported in this paper inevitably reflect the scientific interest of the
authors, and yet they, hopefully, are representative of the basic ideas and tools we can
deploy in research and applications.

In particular, rather than citing a long list of contributions, we have tried to show the
guiding principles underpinning the applications, and underline how methods and options
from different disciplines (electronics, communications, control theory, etc.) can cross
fertilize the chaos-related concept, the principle that really makes chaos cryptography an
effective and sophisticated approach.

Chaos dynamics is still far from being fully exploited, and we think that, in the years to
come, it will continue to offer an excellent opportunity for young researchers and a field in
which to make the most of his/her creativity and talent.
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Appendix A1. Derivation of Adler’s equation

Injection of a signal into an electronic oscillator can be modeled by the scheme shown in
Fig. A1, that is, with an amplifier with gain G (that includes saturation), a frequency
selective element (an LCR group in the original Adler’s derivation), and a feedback loop.
Of course, gain and selective functions can also be distributed rather than lumped. Let E0

be the amplitude of the free running oscillator and Es the injected signal. Inside the loop, a
characteristic time t describes the relaxation (or decay) of E0 (usually t is the larger
between propagation time of the feedback loop and inverse of high frequency cutoff gain).
We represent the signals by rotating vectors, as:

E0 ¼ E0exp iF and Es ¼EsexpiFS,

and write the injected phase as: Fs¼2pDntþfs, where Dn is the detuning from unperturbed
frequency, and fs the phase shift collected at the coupling (or injection) node C (cf. Ref. [8],
p. 261 for details). At the coupling node the following equation holds:

dE0=dt¼ ð1=tÞEs ðA1Þ
By developing the time differentiation, we get:

½dE0=dtþ E0i dF=dt�exp iF¼ ð1=tÞEsexp iFs, ðA1aÞ
This equation can be satisfied by equating real and imaginary parts separately, obtaining:

dE0=dt¼ ðEs=tÞcosðFs�FÞ ðA2aÞ

dF=dt¼ ðEs=tE0ÞsinðFs�FÞ ðA2bÞ
Now, what we actually observe in the experiment is the phase difference of the oscillator

with respect to the injected frequency, f¼F�2pDnt. Introducing this quantity in
Eq. (A2b), so that dF/dt¼df/dtþ2pDn and Fs�F¼fs�f we can rewrite it as:

df=dt¼�2pDn�ðEs=tE0Þsinðf�fsÞ ðA3aÞ
Finally, we insert K¼Es/E0 for the coupling factor and obtain:

df=dt¼�2pDn�ðK=tÞ sinðf�fsÞ ðA3bÞ
which is coincident with Eq. (1) of the text with A¼�2pDn and B¼�K/t.

Fig. A1. Model of a generic oscillator used to derive Adler’s equation.
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Note that also Eq. (A2b) is another formulation of Adler equation. By expressing the
total phase as F¼2pftþf, we put it in the form:

df=dt¼�2pf0 þ ðK=tÞ sinðfs þ 2pDnt�fÞ ðA4aÞ
or, we have the unperturbed frequency f0 and, impressed on it, a frequency modulation
carried by the last term containing Dn—the injection modulation.

In the original Adler formulation, Eq. (A3a) was deduced for the voltage V in an LCR-
tuned electronic oscillator, and t was the damping time constant, t¼Q/2o0, Q¼o0L/R
being the quality factor of the resonator and o0¼ (LC)�1/2 the resonant frequency.

A few comments are in order about this derivation.

– first, Eq. (A2b) is basically the same as the second line of Eq. (2), the one describing
df/dt, in both Lamb [3] and Lang and Kobayashi [5] derivations for a laser oscillator in
the injection regime. Also, Eq. (A2a) is similar to the amplitude equation, the one
describing dE/dt, in both Lamb and L–K equations.
As such, Adler’s equation not only explains frequency locking reached at coupling A¼B

(or Dn¼K/t) also frequency attraction and AM/FM injection modulations described in
the text. These features are common to every kind of oscillator working in the injection
regime.

– second, the stationary gain condition tacitly assumed in our derivation can be easily
removed by considering a second-order differential equation for the oscillator of the type

E00 þ ðG�pÞE00 þ ð2pf0Þ2E ¼ 0 ðA5Þ
where G and p¼1/tp are the gain and loss rates of the oscillator loop, respectively. The gain
can further be assumed of the form G¼G0(1�E/E00)

2 to describe saturation taking place
(with quadratic dependence) at value E00. Repeating the calculation for E¼E0 exp iF, and
ignoring terms higher than the first order, it is easy to obtain

dE0=dt¼ ½G0 1�E=E00

� �2�p�E0 þ ðEs=tE0Þcos Dntþ fs ðA5aÞ
a form coincident with the complete Lamb or L–K for amplitude rate equation.

Comment about Adler’s equation and chaos

When Adler’s equations, in the form of Eqs. (A3) and (A5a), are tested by extensive
numerical simulations, we find that they always contain frequency locking and injection
modulations for any combination of the parameters, but do not go to any chaos nor to
other high-level regime.

Now, as Lamb’s equations are basically the same structure of Eqs. (A3) and (A4a), we
obtain as a consequence that Class A lasers (for example, the He–Ne) do not go to chaos,
neither in normal nor in injected regimes. Nor any enhancement of gain nonlinearity by
saturation [term (E/E00)

2] will help to drive systems to chaos.
To attain chaotic regime, we have to add more complexity into Adler’s or Lamb’s

equations. One way already there is the third equation of the L–K set (Eq.(2)), in which
product NE2 is the main source of increased nonlinearity. This will drive the injected
system to chaos at a large enough K value.

In conclusion, class B lasers (like the semiconductor diode) can go into high-level and
chaos regimes when in a DOF or ICL scheme, because of the 3-equation L–K set.
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Opposite to this, in a Class A laser, the equation about pumping levels like the last of the
L–K set (Eq. (2)) should certainly apply, but in it we have normally JZ/edEN/tr, so that the
nonlinear term GN(N�N0) E

2 is negligible, and the equation is decoupled from the first two for
E and f.
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